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Structural Response of Reinforced Concrete Beanigected to Explosions

Time dependent transformation factors, support reacaodslistribution ofsection
forces
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HAMPUS KARLSSON

Department of Civil and Environmental Engineering
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ABSTRACT

A shock wave in air resulting from an explosion is a highly impulsive load. A
structural element subjected to an impulse load will behave differently than when
subjected to a static load. This Master's thesis uses finite element analyses and
simplified single degree of freedom systems to describe the structural response for a
simply supported reinforced concrete beam subjected to an impulse load.

Theory about design of reinforced concrete members and how the member can be
described with a singl degree of freedom system, denoted SDOF system, are
presented. Further, the magnitude and distributiosectionforces are investigated

for an impulse loaded reinforced concrete beam and how well these can be described
different methods. Speciattenton is given to the phenomenon dynamic direct shear
failure and how this is considered in Swedish and American design codes.

The transformation factors used to transfornstauctural member into an SDOF
system come from an assumed deformation shape. Toemdgion shape is initially
governed by wave propagation and the theécak transformation factors daot
describe the respondeilly adequate Therefore, theconcept of time dependent
transformation factors istroduced.This conceptrequire an energyreservation
method hat is presented in this thesand makes the deformations in the SDOF
approach and the finite element agree very well.

The use of an equivalent static load is shown to proseationforces on the unsafe
side. It is also shown thaheir distributioncannot beadequatelydescribed with an
equivalent static load.

The initial value of the support reactionay obtain ahigh magnitudewhen the
structural member is subjected to a highly impulsive impulse [0hi$ is treated in

the literature in different ways. The current Swedish approach overestithates
support reactiowonsiderably and the best approach is to use obtained time dependent
transformation factors and a varying stiffness. Nevertheless, a more general approach
on how todescribe this is needed to describe the exact peak value and the time of its
appearance. The SDOF model for design against direct shear is vague and further
study is needed in order to treat this problem.

Key words: Explosion, impulse load, SDOF, direshear, finite element analysis,
concrete, dynamicesponsgtime dependent transfoation factors, support reaction
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Tidsberoende transformationsfaktqrerreaktionskrafter och fordelning av
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SAMMANFATTNING

En stétvag i luft frAn en explosion ar en impulsiv last. En konstruktion som ar utsatt
for en impulsiv last kommer bete sig annorlunda jamfért med en statisk last. Det har
examensarbetet behandlar frfiplagda armerade betongbalkam ar utsatta for en
impulsiv last. Detta gérs genom FE analys och férenklade enfrinetsgradsmetoder.

Teori om hur armerade betongbalkar dimensioneras och hur de kan bli férenklade till
enfrihetsgradssystem presenteras. ¥daindersoks storlek och fordelning pa
sektionskrafter och hur val dessa kan bli forklarade med férenklade metoder. Speciellt
fokus ar lagt pa fenomenet dynamic direct shear failure och hur detta dimensioneras
for i svensk och amerikansk designkod.

Transbrmationsfaktorer som anvands for att géra om ett konstruktionselement till ett
enfrihetsgradssystekommer fran en antagen utbojningsform. | ett tidigt skede beror
utbojningsformen pa vagutbredning vilket gor att de teoretiska vardena pa
transformationsfietorerna inte ar tillrackligt korrekta. Darfor har tidsberoende
transformationsfaktorer introducerats. Energin maste dock bevaras och ett
tillvdgagangssatt ar presenterat i rapporten. Metoden som anvants gor att
deformationen i FE analysen och enfrihetdgsystemet dverensstammer valdigt val.

En statisk ekvivalent last undervarderar sektionskrafter namnvart. Aven den
tilhdérande fordelningen kan inte beskrivas med en statisk ekvivalent last.

Stodreaktioner@r valdigt hog initialt. Det beaktas av olika dinséoneringsregler pa

olika satt. Dagens svenska metod 6vervarderar stodreaktionen och den basta metoden
ar att anvanda tidsberoende transformationsfaktorer och en varierande styvhet. En mer
exakt metod for att bestamma storleken och tidpunkten for déalanibpppen maste

dock hittas.

Enfrihetsgradssystem for direct shear faillrehover utredas mer for att kunna
tillampas. De undersokta balkarna hade gatt sonder i bojning om direct shear failure
intr&ffar i ett tidigt skede.

Nyckelord: Explosion, impulst last, enfrinetsgradssystem, direct shear, finit element
analys, armerad betong, dynamisk, tidsberoende transformationsfaktorer,
stbdreaktion
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Notations

Roman upper case letters

A
A
A

Area

Equivalent area state |
Equivalent area staté

Area of reinforcement

Damping

Youngdés modul us

Youngds modul us for
a

Equi v

Youngo6s modul us for

External force

Force in concrete

Force in steel

Shear modulus

Moment of inertia

Impulse

Moment of inertia for concrete
Moment of inertia state |
Moment of inertia state |l
Characteristic impulse
Stiffness

Length

Moment

Cracking moment

Designing moment

Bending moment in midpoint
Ultimate moment capacity
Moment capacity when yielding starts
Normal force

Pressure

Peak pressure load

Internal resisting force
Maximuminternal resisting force
Direct shear resistance

l ent Youngds

concrete

modul us
steel

for
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T Natural period

Vv Shear force

Veq  Designing shear foe

Vel Elastic support reaction
Vol Plastic support reaction
Vs Support reaction

We External energy

W Internal energy

W Kinetic energy

Wit  Total energy

Qeq Total equivalent load
Qe Elastic equivalent load
Qo Plastic equivalent load

Roman lower casdetters
a Acceleration
a Length of slab

Q

Shear span

Width of crosssection

Width of slab

Concrete cover

o O T T

Damping
C Pressure ave velocity
C, Shear wave velocity

d Effective depth of crossection

f.. Concrete compressive strength

f.,  Design value of concretcompressive strength
f, Characteristic value of material property

fq Design value of material property

f Yield stress

Design value of yield stress

h Height of crosssection
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i Impulse intensity

I Characteristic impulse intensity
k Stiffness
K, Equivalent stiffness

k, Stiffness state |
k

" Stiffness state Il

| Length
m Mass

m,  Equivalent mass

m,,  Equivalent elastic mass
m,  Dynamic bending moment
Equivalent plastienass

p Momentum

q Distributed load

g, Distributed crack load

Je, Equivalent distributed load
d, Ultimate distributed load

Radius ofcurvature

S Reinforcement bar spacing
t Time

t, Arrival time

ty Load duration

u Displacement
% First derivative olu with respecta timet, velocity
o Second derivative af with respect to timé acceleration

u,  Elastic displacement

u,, Elastoplastic displacement

Us,e Elastic par of elastplastic displaement
Us,n Plastic par of elastplastic displacement
u,  Plastic displacement
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U, Displacement of system point

U,  Total displacement

u, Displacement of wavenivertical direction

u, Displacement of wave in horizontal direction

v Velocity

A Velocity in system point

X Coordinate

X Depth of compression zone

X, Depth of compression zone state |

X, Depth of compression zone state |l
y Coordinate

z Coordinate

z Coordinate from neutral axis

z Internal lever arm for reinforcement

Greek upper case letters
D Direct shear slip

B First derivative ofDwith respect to timé velocity
t Second derivative aDwith respect to timé, acceleration
F Deformation shape

Greek lower case letters
a Damping constant Rayleigh damping
a,  Stress block factor

a, Ratio between Young's modulus for steel and concrete
b Damping constant Rayleigh damping

b,  Stress block factor

da,  Displacement error

e Strain

#  Strain rate

e.. Concrete compression strain

[ Concrete tensile strain

ct
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Ultimate concrete strain

Steel strain

Yield strain

Elastic strain

Plastic strain

Bar diameter

Damping ratio

Ratio between actual peak force and characteristic peak force
Ratio between actual impulse and characteristic impulse
Transformation factor for the internal force
Transformation factor for the external load
Transformation factordr the mass

Transformation factor for the mass and the external load

Wave length

Shear span

Support rotation

Plastic rotation
Maximum plastic rotation
Density

Amount of reinforcement

Stress

Concrete compressive stress
Concrete tensile stress
Fictitious yield stress

Shear stress
Poisson's ratio

Angular frequency
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1 Introduction
1.1 Background

An explosion occurs when there is a sudden expansion of matteis rapid
expansiorcreates a shock wavbkat in turnresuls in an impulse loadicting on the
surroundings Explosionscan either be intentionalor accidental; an act of war or
terror versus an industrial or traffic accident for example. ddresequencesf such

an event cabe devastatingp nearby structures and peapdes they are spontaneous
events and difficult to predict it isnportant tobuild defencestructuresand to adapt
the design of potentially targeted buildings so that they can withskasdype of
extreme dadng. Explosions have recently struck Nordic capital cities, Oslo in July
2011 and Stockholm in December 2010.

Explosion shock waves are highly impulsive and dynamic loads. They are intense and
occur over a very short period of time, typically a few isgitonds. The response of a

structure to a dynamic load varies considerably to that of a static load. The dynamic
response is more difficult to explain and therefore simplified approaches are often
used in order to explain the behaviour of the structuneel established method is to

transform the structural element into an equivalent single degree of freedom system,
often referred to as an SDOF system, by choosing a system point in the structure.

Transformation factor s ass, eesigiasce dlanpiogande | at e

external force to the corresponding equivalent parameters in the simplified SDOF
system. Subsequently, the maximum moments and shear forces acting on the structure
can be found.

The material behaviour will significantly influea the resistance of a structure.
Reinforced concrete has been proven to perform well when subjected to explosions
due to its high mass and ductile behaviour, which dissipates a large amount of energy.
However, it has a complex strestgain relationshipisce the concrete cracks and the
steel reinforcement yieldsTherefore, the relationship is often idealised to linear
elastic, ideal plastic and elagiastic relationships. The same idealisations can be
used for other materials but this thesis will ldygéocus on reinforced concrete
members.

Thisworki s a continuation of Nystrong2006pEkamndi o u s
Mattsson(2009), and Augustsson and Harenst@d10) dealt with the response of
reinforced concrete beams and slabs to an exquidsy using simplified approael

where the main focus was bending response. The results from the simplified design
approach wre compared to more detailed finite element methods where it was
concluded thathe equivalent SDOF approach using transformatactors could be
somewhatmisleading. This was especially the case for plastic and elpktstic
analyses. More investigations will therefore be carried out in order to explain the
influence of transformation factors and how the member can be desgnedrment

and shear force.

Moment and shear force distributions in an impulse loaded structure differ
significantly compared to the expected static distributidn@henomenon that has
been observed in some reinforced concratectiressubjected tampulse load is
called direct shearShort after detonation, often within the first millisecotatge
shear forcewill occur close to the supportehich will cause an almost vertical crack
propagating through the member. Tlises not occur when the santeusture is
subjected to a static loadknowledge about dynamic direct shear failure is limited.
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The Swedish Fortifications Agency (in Swedish; Fortifikationsverket) has recently
given out a handbook, which treats direct shear failure brieihy MSB,
(Myndigheten for samhallsskyddch beredskgp Swedish Civil Contingencies
Agency, reuests to know more about it in order to take it into account in design if
needed.

1.2 Aim

The aim of this Masterds thesis iIis to comp
Masted ghesesand provide a more comprehensive understanding about design
considerations for structures subjected to explosions. The report cergidanain

areas:

1) The moment andshear force caused by an impulse legk studied in detail
for reinforcedconcrete beams. The thesiso investigatesand presesthow
the shear force can be determined and designed for. Additional attevdmn
given to the phenomenaf direct shear failure and how it can be taken into
account in design with regard to exptoss.

2) Transformation factors have been provém be somewhat misleading
according to Ek and Mattsson (2009) and Augustsson and Harenstam. (2010)
This thesis presesithow these differ from more detailed finite element
analyses and how can it be taken iatgount in a simplified design approach.

1.3 Method

A literature review of previous work in the area of intexeascarried outn order to
understand and generally describe explosions, impulse loading and design
methodology. The literature reviewasextened to includehow shear force and the
direct shear phenomendmehave and how they are taken into account today in
Swedish and American design code. The American design approach against
explosions is chosen as a reference since it is one of the most cengivehmethods.

Investigationswere carried out by performing detailed analyses in the commercial

finite element software ADINA, which is suitable for dynamic analyses. These

analyses are the reference for simplified methods and are assumed to repeesent th

real behaviour of a structure subjected to an explosion. It is important to realise the
softwareds |l imitations and restriwasi ons. T
therefore critically been evaluated by questioning the procedure and the ingpdell
assumptions made in the analyses. Several analyses with different inpwedata

performedin order to obtain a reliable result, which is more general to any explosion

situation.

The simplified approachewere used with three material idealisationsclirding,
linear elastic, ideal plastic and elagtastic. The first two are used in order to
describe the more complicated elaptastic material description, which is the most
realistic material response despite overlooking strain hardening.
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In this gudy an SDOF approach with different material respomsesscompared with

their assumed real behaviour.Wias alsoupdated in order to correlate better by
investigating the transformation factors. The design moment and shear force on the
structure accordyg to design codes are compared to the real loads and the rightness is
evaluated. The issues of time dependent transformation fagtoeslso addressed to
consider possible effects of the loads on the structure.

1.4 Limitations

The analyses only treaginforcedconcretebeamsit is most common to use concrete
when designing structures against explosions due to the great maks andsibility

of ductile behaviour that consume a lot of energpwever, much of the basic
equations are applicabte other materialsas well The reinforced concretstress

strain relationshivill be simplified toa linearelastic response, plastic response and
elasteplastic response to reduce the calculation efforts when investigating the shear
force.This is a relatively god approximation.

The studies are limited to a simply supported beam. However, some variation of
crosssection, length and loading will be done to validate the behaviour. No analyses
will be carried out on slabs but some theory about their behavioursisnbeel.

A more detailed analysis of reinforced concree&amswas intended to beased to
compare with the simplified methodby taking both concrete cracking and
reinforcement yielding into accourtiowever, the detailed model was not completed
and is therre only documented in Appendixr order to not take focus from other
investigations

This thesis will investigate the primary effects ofpulse load induced byshock
wavesin air from an explosionlt will focus on the early behaviour of the struetiby
investigating moment, shear force and displacement.iffheence of ground shock
waves and bomb fragments wile neglected, as will sendary effects such as the
load from collapsing structures

The thesis will not considethe material effect ohigh strain rates which act to
enhance the performance of the structure. By neglecting the positive effects of an
increasing strain rate the worst case scenario will be studied. It is discussed in the
American design code and is therefugherdescribe in theSection2.4.1.5

1.5 Outline of the report

Chapter 2 is a theory chapter that covers basic explosion theory, reinforced concrete
behaviour and design approaches. In addition, dynamic systems are described and the
transfomation from a real structure into an equivalent single degree of freedom
system is presented.

Chapter 3 will describe a cross section and some load cases that will be used for
further studies. Hand calculations will be shown for the example and paratheters

will be used in further studies are calculated. It will also cover some consideration that
needs to be taken into account when using finite element modelling of the problem.
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Chapter 4 is the first result part in this thesis. Here deformation oftiihetse is
discussed and this leads to an introduction of time dependent transformation factors
for the equivalent SDOF system.

Chapter 5 compares theectionforces obtained by the equivalent static load and
compares these with finite element solutiombe magnitude and distribution are
discussed.

Chapter 6 investigates the support reaction, which must be found if direct shear failure
can be described adequately. Several methods are compared in order to see which is
the most preferable in design.

Chapte 7 evaluates the simplified single degree of freedgstem for direct shear.
This is done by constructing istamage curves to be able to see whether a bending
failure or a direct shear failure will occur.

The different results are discussed individuailyvery chapter and then followed by

a more general discussion and conclusion. The Appendix will give a more
comprehensive picture of the investigations performed in here. In Appendix I, a
detailed analysis where a solid 2D model taking concrete craakitgeinforcement
yielding into accountis presented. This model had convergence problems when
subjected to an impulse load and is presented in Appendix | in order to not take focus
from other investigations.
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2 Theory
2.1 Explosions

An explosion occurs whenehe is a need of energy releaBaergyis releasedvhen

an amount of matter with a certain volume suddemiyandsThis sudden release of
energymanifests in théorm of light, sound, temperature and pressatkof which
we recognise as an explosionherl pressure will create a shock wave, which will
spread outwardsphericallyfrom the point of energy relegsseeFigure2.1. As the
shock wave advancesway from its origin the pressure will decrease rapidly and
return to the sindard atmospheric pressufiéde speed of thiprocess is supersonic,
ending after a feunilliseconds.

Explosion centre

Pressure decreases furtt

j % away from the centre

Figure2.1. Anillustration of how the energy propagates outwards from thecso
of the explosion

A shock wave can be describddougha pressure curve in relation to time. After
some time, the arrival time, the shock wave front will reach the area of interest and
subject itto a positive pressure. Because the shockwave foheesit to moveas it
spreads outwarftom the explosion centiewill createalack of air behingcausinga
partial vacuum or negative pressure phase. A principal presisoeecurve of an
idealised shock wave is illustrated fingure2.2. The positive pressure phase is af
higher magnitude and hassaorterduration than the negative phastowever,a
shock wavas according to Johansson and Laine (2007), cfeplified by assuming
alinear decrease of pressued by negleatg the negative phase due te ielatively
low amplitude, seeFigure 2.3. In order to avoid convergence problem$ien
modelling, avery steepnclination is given to the pressure libetweenarrival time
andpeak pressure.
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4 Pressure

Shock front

Negative pessure
1Atmp-----Lo-mmm oS e -

Positive pressure

Figure2.2. An idealised shock wa¥em an explosion. The high amplitude positive
phase is followed by a longer negative phase with lower amplitude.

4 Pressure

Shock front

1AtmMp-----

Figure2.3. A simplified shockwave assumes linearly decreasing pressure and
neglects the negative phase.

An idealised shock wave progses through air without beinljsturbed However, in

a real environmenhe magitude and spreading of the shock wave bdlaffected by

many phenomenaVhen a shock wave reaches a stiffer object the wave is reflected
against its surface. This reflection causes some major changes in the properties of the
shock wave and can result am increase of pressure up to twenty times larger than
that of the original wavesee Johansson and La{@€07).

There are two main types of reflection: regular reflection and mach reflection. Regular
reflection is further divided into normal reflectiaand skewedreflection. Normal
reflection happens when the incoming wave approaches the surface perpendisularly
shown in Figure2.4. Mach reflection is a special case skewedreflection and
happens when the angle between ithoming wave and the reflecting surface is
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around 40, seeFigure2.4. It is characterised by a part of the shock wave reflecting
regularly with another part just sliding along the surface.

Skewedreflection
Normal reflection

Mach reflection

L 908 & 4e0

Reflection surface

Figure2.4. A shock wave is reflected at a surface. Two special cases of reflection
are normal reflection and Mach reflection.

Diffraction is another phenomenon that aff
describng how the shock wave spreads behind and past a building or an object. This

is a very complex proceeding and depends on the geometry of the structure.
Nevertheless, effects of reflections and diffractions are taken into account by applying

a larger load. fecific consideration of how a wave is reflected will not be taken. F

more detailed informatioregarding reflections and diffractiortbe reader isaferred

to Johansson and Lai2007).

There are mpirical expressionfor the values of peak pressussmd duration from a
certain explosion at scaled distamcéohansson andiine (2007).The Swedish Civil
Contingencies Agen¢yMSB (2011), has defined a load that a protective facility
should be able to resist. This is Johansson andaine (2007) referrd to as an
archive bombThe archive bomb consists D25 kg of high explosive TNT exploding
in air at a distance of 5 metres from the structure.

2.2 Structural response of reinforced concrete subjected to
static load

2.2.1 Beams
2.2.1.1 Introduction

Engstrom (2011a) defes a beam as a linear structural member predominantly loaded
in flexure. According to Eurocode 2, CEN (200#e structural member is a beam if

the span to depth ratio is greater than 3 and the width is less than 5 times the depth of
the member. The load transferred to the supports in one direction. There are two
main design issues that need to be addressemhent and shear. These described

in the following sections
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2.2.1.2 Moment

There are three models to explain the behaviduwoocrete beams in Ewode 2,
CEN (2004). They are called state I, state Il and state Ill and can be seen in
Figure2.5.

State Figure Strain,e Stress,s
b
N —
- - E

. . ASG df j@o aS :E_i j y
s.(20)=—2z

I PRl Eeley d T

| 3
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I zI L
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Figure2.5. The different states afconcretesection ad internal forces.

State | is when the concrete is not cracked and the behaviour is assumed to be linear
elastic. It is often reasonable to neglect the influence of reinforcement in this state.
Thus,the crack resisting moment of the creextion can beasily determined with

help of the moment of inertig the location of the neutral axis and concrete tensile
strength.

Concrete is weak in tension and will crack early. A state Il model is often used when a
cracked concrete beam is studied for low loaldss model assumes linear elastic
behaviour both for concrete and reinforcement but neglects the influence of cracked
zones. It is an adequate assumption for the reinforcing steel and for concrete at
stresses below the steel yield stress. The reinfordessn be converted into an
equivalent concrete area. Thereafter a moment of inertia for state Il can be calculated
and consequently the moment capacity.

When the steel begins to yiedthd the concrete has a Rlomear compression strength

a state Ill models used. It takes both concrete cracking and steel reinforcement
yielding into account. The moment capacity is determined by using moment
equilibrium. The ultimate capacity can be calculated by assuming reinforcement
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yielding and ultimate compressive stran concrete in most outer fibre. Concrete
stress block factorag and br are used to approximate the Aorear distribution in

the concrete with a stress block with a lever arm to the neutral axis. If the steel in a
state Ill model has not begun to Igdiethe concrete will suddenly fail in compression.
This is brittle failure mode and should be avoided if possible.

These three different states can be demonstrated in a mouoreature relationship

for a continuous concrete beam. A moment curvatureioekdtip can also be
described with a force displacement relationship where the force éxtdreal force.

A typical momervcurvature relationship for a small reinforced concrete region can be
seen inFigure 2.6a This momentcurvature relationship can be modified due to time
dependent deformation and creep but will not be considered in this. tAesis
additional axial force will change this relationship and a specific case for each axial
force must be obtained.

The momenturvaure relationship can be simplified from a miliitiear to a bilinear
relationship where the slope of the curve is an approximation of the flexural stiffness
at the different stages. This-lmear relationship is illustrated iRigure 2.6b. It is
sufficient to use this simplification if the purpose is to calculate the need for plastic
rotation according toEngstrom(2011a). In order to determine the yield bending
moment and its corresponding curvature at the breakpoint, a stdetibnanalysis

should be carried out assuming tension reinforcement strain has just reached the yield
strain. Formore detailed description how to do suchaaalysis the reader is referred

to Engstrom(2011a).
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410 416 ¢+ 415 416 ¢r=
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Cr+y ¢r= cr+ ¢l =
@ (b)

Figure2.6. A moment curvature diagram (a) and the corresponding simplified
moment curvature diagram (b).

Whena section in a reinforced concrete bearacks it will suddenly losestiffness

and the remaining stiffness wdlepend on the provided reinforcementeTparts that

are uncacked will be stiffer and moment redistribution will take place as #tiegct

more momentWhen the concrete cracksistoften assumed that the cracked part of

the section cannot take anyests. However, the uncracked concrete between flexural
cracks will carry some stress with help of the bond between the reinforcement and the
concrete. This contribution is large just when the concrete cracks but declines as more
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sections crack. This is refed to as the tension stiffening effect and can be seen in
Figure2.7. In further investigations, this thesi®esnot consider tension stiffening.

»
»

Statel
/ ouncracked

Without tension
stiffening

" Statell &fully crackea

’
’

I/ 1

v

Figure27. Response of a region with regard
member subjected to pure bending. Based on linear sitesg
relationship for both concrete and steel.

After a while cracking will exist all along the length t¢iie concrete km and the
stiffness of each section merely dependent othe amount of reinforcementhe
stiffness distribution in the cracked statay be different from that in the uncracked
state due to uneven reinforcement arrangement within the beam. Loadibgatne

even further will result in reinforcement yielding. The yielding will start in the highest
stressed section and in this section the steel deforms more than in adjacen$ section
where the steel still have an elastic response. This will create a ragibn
concentrated plastic rotation, a so called plastic hinge.

2.2.1.3 Shear

A load on a concrete structure will in addition to moment give rise to shear stresses
over the span. The flexural stress and the shear stress can be combined by using
principal stresses The concrete wil/ crack i f the
tensile strength at any point in the beam. Failure due to shear forces is often brittle and
happens suddenly.

For a beam loaded in pure shear this means that the principal strebsms 48 to

the longitudinal axis, seleigure2.8. Eventually, the tension principal stresses exceed
the tensile strength and a crack will occur. The crack will propagate in the direction of
the maximum principal stress, i.e.°46 the longitudinal axis. The crack can either
start as a flexural crack in the outermost fibre and then develop as a shear crack
through the depth of concretBigure 2.9a, or proceed as a web shear crack in the
centre of the deth Figure2.9b.

1C
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Figure2.8. Principal stresses due to pure shear.
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Figure 2.9. Different shear crackqa) Flexural shear crack and (b) Web shear
crack.

A strutandtie model can be used to explain the behaviour in shear and is illustrated

in Figure2.10. The remaining uncracked concrete compression zae lme
interpreted as a compression chord, the concrete between the cracks as a compression
strut and the tensile reinforcement as a tensioritghear failure is characterised by

either slip along the crack or crushing of the compression strut. Theanesisagainst
compression of a concrete compression strut can be obtained by equilibrium
equations.
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Figure 2.10. Strutandtie model for shear cracks.

There are four main mechanisthat resist shear failure along a cracked section in a
flexure reinforced concrete beam, segure2.11.

1. The crack is not smooth and will therefore have some friction during slip.

2. Ballast can be trapped in the crack and crewehanical interlocking.

3. The remaining uncracked concrete compression zone will resist slip along the
crack.
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4. Dowel action of the tension reinforcement acts as a significant resistance
mechanism for large deformations.

\ Vi

‘ —

(a) (b) (©)

Figure 2.11. Mechanisms for crack resistance (&)ction in crack(b), mechanical
interlocking(b), uncracked compression zone and dowel action of
tensile reinforcemen(t) .

However, hesemechanismsgreoftennot sufficient to rely on when designing against
shear failure. Firstly, the capacity agaiesihcrete crushing and slippage along the
crack needs to be considered. Shear reinforcement should be introduced if the
capacity is too low to take tension forces asrthe cracksThe shear reinforcement

also ties the main reinforcement bars together and confines the combeetdesigner

can, within some limitations, decide in which angle the final shear crack will form at
by designing the shear reinforcement irtistivad cases.

Shear reinforcement are commonly made up of stirrups or links perpendicular to the
axis of the beam, shown gure2.12a, but can also be at an angle. By using inclined
reinforcement as shown iRigure2.12b, more shear reinforcememay cross the
crack, which means that a higher resistance will be obtained. However, the installation
is more complex and can be more expensive than using more reinforcement. The
direction of shear forces ivialternatein a dynamically loadegdystem meaning that
shear reinforcement must be provided in both directions. Lacing, shown in
Figure2.12c, can be used for this purpose and provides large rotational capacity
according to Do§2008)

(@) (b) (©)

Figure 2.12. Different shear reinforcement: (a) stirrups, (b) inclined reinforcement
and (c) lacing.
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2.2.2 Slabs
2.2.2.1 Introduction

It was initially intended to extend the analyseghis thesisto include slabs. Due to

this projects time limitatiorthough, it was not possible to analyse slabs further.
Although the theory presented below will not be further used it shows how a slab can
be designed and can therefore be of interest.

A slabis a structural elemenbften concrete materiakhich has significantly greater
width than height Engstrém (2011b) The main difference compared to a beam
element is that transverse action will also have to be considieredo the great
width.

A slab can carry the load in one or two directions, often supported by continuous
walls or beams. A onway slab can be seen as a wide beam and designed accordingly
per unit width. However, a two way slab carries the load in two directions and will
therefore require 3D analysis in order to obtaimproper reaction forces and
deformations. In this report, slab will refer to a two way slab.

!
+

Figure 2.13. Oneway and tweway slabs. The dt®d lines show that the edges are
simply supported.

A slab is normally statically indeterminate, which means that the choice of material
model will influence the result. The material behaviour is the same as for the
described beam behaviour$ection2.2.1.2but stresses will exist in 3 directions. The
reinforced concrete slab will go from uncracked to cracked, to reinforcement yielding
and further up to failure as the load is increased. Thdinear behaviour allows the
designer to decide the behaviour of reinforced concrete by arranging the
reinforcement accordingly. The reinforcement configuration will change the stiffness
and the corresponding reactions throughout the sections.

Since reinforced concrete slabs are eatbomplex to analyse, models are often
simplified. There are three methods for designing reinforced conoréte ultimate

limit state The most detaileds a nortlinear finite element method with the real
behaviour It requires a finite element solutiothat explicitty models the
reinforcement yielding and the concrete crackifge other alternatives are strip and
yield line method. These assume ideal plastic behaviour mmoe shere is no
relationship between moment and curvature in the plastic, steecollapse load
cannot be solved directly. It has to be approached from either upper bound or lower
bound solutions.
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2.2.2.2 Strip method

The strip method is a static method providing lower bound results when analysing
plastic reinforced concrete slabs (Emgs1, 2011b). The general idea is to assume a
moment distribution in the slab in the ultimate limit state and then calculate a
corresponding maximum load.

The moment distribution must be in equilibrium in the ultimate limit state. The slab is
divided intostrips in both main directions. The load should be carried by the strips
together. Any load distribution is allowed as long as the load that is carried by the
strips together is the same as the actual load on a considered element lying on both
strips. Theslab can be divided into different strip patterns and load distributions, see
Figure2.14, which will give different accuracy of the predicted failure load. The more
the division of the slab looks like the final mechanism, thieebehe lower bound
solution will converge with the actual load and the better the behaviour up to failure
can be estimated. The obtained failure load is however, always underestimated.
Moments in the main directions are easily obtained on the safe side.
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Figure 2.14. (a) The easiest and tHeast accurate strip division(b) Load division
with more accurateesults (c) Strip division following the natural load
dividing lines, which gives the most accurate solytitbased on
Engstrom(2011b).

The designer has a great influence when designing a slab. Wrong assumptions of how
the slab will act will lead to ineffective use and unneaé$y high amount of
reinforcement. The designer can also decide how the force is resisted at the supports.

General rules and guidelines for how to choose strips or load division for different
support conditions can be found in Engstrom (2011b). It is elplained how
unrealistic and extreme solutions can be avoided.
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2.2.2.3 Yield line method

A yield lineis a line with plastic hinges where the deformation has reached the yield
strain and the moment capacity cannot be further increased. It starts at the most
stressed point and will, as in theory of plastic hinges, eventually form a mechanism
and the slab will fail. The yield line methad an upper bound approaemnd will
therefore always provide an answer on the unsafe side since the slab will fail in the
failure mechanism that requires least enefgya resultit might be a lengthy process

to find the worst failure mechanism. The development of a potential failure
mechanism is shown iRigure 2.15 for a slab simply supported on foadges. This
might not be the most dangerous collapse mechaiismever, he yield line method

is a very effective approach when analysing existing slabs, where a simple crack
pattern can be used and a collapse load higher than the actual collapsdllbad w
obtained.

___________________________

___________________________

(@)

(b)

(©)

Figure 2.15. Yield line development. The most stressed point starts to yield and the
yield line will develop until a mechanism is formed

When the slab deflects, thparts defined by a yield line must fit together. This is a
kinematic requirement which needs to be fulfilled for all collapse mechanisms. The
kinematic requirement can be ensured if a yield line or its extension passes through
the intersection of the adjae nt part 6 s r digwe2.il6atis aléar tlak e s .
the yield line between parts 1 and 2 passes through the intersection of rotation axes
AB and AC. However, the yield line between part 2 and 3 does not intersect the
intersection between rotation axes AC and BD because the axis never intersect. To
overcome this, the rotational axes AC and BD are extended to infinity which creates
and illusion that they intersect. The centre yield line between parts 2 and 3 will
approachthe imaginary intersection and therefore the kinematic requirement can be
seen as fulfilled.

A C

___________________________

Figure 2.16. The kinematic requirement must be fulfilled for the mechanism to form.
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2.2.2.4 Shear

Shear forces irslabscan be resisted in the same manner as for beamszon&s,

which are zones where plane sections remagiane under loading,
Al-Emranietal. (2008). A strip model can be used to calculate the shear resistance
and placement adhear reinforcement. Shear failure of a slab supported on continuous
walls subjected to uniform loading is generally not the governing failure mode since
the shear force per unit length is relatively small. However, close to concentrated
forces or supporis.e. discontinuity regions, great shear forces can occur. A flat slab
supported on columns for instance. Flat slabs or point load action will not be
considered in this thesis. Since the shear force occurs in two directions for slabs it is
rather complexand will not be treated further in this thesis.

2.2.3 Plastic rotation capacity

Reinforced concrete members have a limited plastic rotation capacity. Thetiegore
predicted failure mechanism may not occur if sufficient rotation at a plastic hinge
cannot develp and the member may consequently fail before the full mechanism is
developed. Experiments of plastic rotation capaaigy show low accuracywith
theoretical models (Johansson and Laine, 208&eral methods exist for calculating
the rotational capagif giving varying results. One potential source of diféerence

in resultsis that steel properties have changed significantly over the last decades
Johansson(1997. The method used in Eurocode 2 can be used to estimate a
conservative value of the maxum allowed rotation. The method uses a diagram
taking concrete strength, reinforcement class and the ratio between the compressed
zone and the effective depth into accoweeFigure2.17.
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Figure 2.17. Diagram for evaluating the plastic rotatiompacity according to
Eurocode 2, CEN2004).

For low values of the ratio between compressed zone height and the effective depth
the limitation will be governed bthe ultimate steel strain. Concrete crushing strain
will govern the limitation for higher ratiogor higher values of the ratio than shown

in the diagram, a sudden abrupt failure will occur.
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2.3 Simplified material behaviour

2.3.1 Introduction

As realisedn Sedion 2.2, reinforced concrete is a complex material. Therefore it can

be preferable to sim@yi the behaviour. Three simplifiechodelsare usedin this

thesisto describe the dhaviour of reinforced concretéinear elastic, stic and
elastoplastic. The response of these modeften gives a reasonalyl accurate result

but is seen as potential souscef error in previoudMa s t e r § Augustesersaads

Harenstam (2010), Nystrom (2006) and Ek and Mattsson (2088)thesisintended

to in additionto analy®s with simplified material behaviour alsaodelt he mat er i al 6
nonlinear behaviour, explicitly taking reinforcement vyielding and cracking of

concrete into accountThis model was never completed bus documentedin

Appendx .

2.3.2 Linear elastic

The simplst way to model the material behaurois to model it as a linear elastic

material By doing s¢ no permanent deformations will remaafter unloading and the

stress strain relationship will be linear as showRigure2.18. From Hookedbs | a
force-displacement tationship can be determined as

R=kQ (2-1)

where the internal resistance force is den®ethe stiffness k and thaisplacement
u. The stiffness can be found for any structure by relating the deformation to the load
instead of moment to curvature.

RaA

> U

Figure 2.18. Linear elasticforce-displacementelationship

2.3.3 Ideal plastic

When modding the material with ideal plastic behawnipthe deformationsare zerdf

the stress in the material is kdgglowthe yield stress. It also means that the material
cannot take higher stresses than the yield strAsssoon as the yield stress is reached
it will start to deform wherethe limit of thisdeformation isn theoryinfinitely large
However, he deformation is in practice limited by the plastic rotation capacity. The
ideal plasticforce-displacementelaionship is illustratd in Figure 2.19. Ry, is the
internal resistance foramrresponding to the yield stress.
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Figure 2.19. Ideal plasticforce-displacenentrelationship

The relationship can be described with equai#B) whereF denotes the external
forceandu the displacement

_eéF for F<R, andu=0

R=
}Rm for F2R, oru, O

(2-2)

2.3.4 Elasto-plastic

The simplified elasteplastic material behaviouls constructed by combining the
simplified elastic anddeal plastic materiakesponses described in Sect®8.2 and
Section2.3.3regectively. Thus, a foredisplacement relationship can be obtained,
see Figure 2.20a. Initially, as the load increases the material response has elastic
behaviour until the material reaches the yield limit. The elastic deformation
completely reversible. When the limit is reached, the material cannot take more stress
and permanently deforms. Therefore, it can be modelled with the ideal plastic
behaviour. If the structure is unloaded when permanent deformations has developed,
theunloading curve will be parallel to the elastic curve and when it is loaded again the
plastic deformations will take place where it last endedFgpee2.20b.

Ra RaA

Plastic deformation starts

v
c

v
c

Permanent deformation

Figure 2.20. Elastoplastic (a)force-displacement relationshifb) response while
loading, unloading and reloading.
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The elasteplastic relationship can be written as

_ ek, for F <R,

IR, for F2 R, (23)

2.4 Impulse loaded systems

2.4.1 Definitions of dynamic parameters
2.4.1.1 Force
According to Newt d¢msaefined & ¢the prabuct chmagssanti or c e
acceleratiora.
F=ma (2-4)

The force idefined as positive in the direction the acceleration is taking place. It can
also be recognised thdtthe mass is increasethe acceleration responseeto a
forceF will decrease

2.4.1.2 Pressure
Pressurd is defined as forceF actingon an are®\.

F
P=— 2-5
- (2:5)
2.4.1.3 Momentum and Impulse
A bodywith massm andvelocity v has, per definition, a momentym
p=mv (2-6)

When & externaforce acts ombody, the body willgain or lose momentuis p This

change in momentums defined as the impulsi.a body is subjected to a positive

forceF from timety to ty, the velocity will increase anthe momentum will increase

top. The new momentum can be calcul ated by us

4
p, = mMv+ ﬁ: (t) dt (2-7)
to
where the right expression is the generated imguleen a force.

| = ﬁ=(t) dt (2-8)
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This represents the area under floecetime graph. The shock wave from an
explosion is measured in pressure, which is a measuremimteacting on an area.
Therefore, the impulse can also be written as

| = Ac'ﬁ?(t) dt (2-9)

The area under the presstiime graph is sometimemeferred to aghe impulse
intensityi, transferred to the bodgdicated inFigure2.21.

PressureP
A

[

Time,t

Figure 2.21. Simplified pressurdime curve.

There are two extreme values of an impulse: infinitely high pressure for an
infinitesimally short time and lower pressure for an infinitely long time, see
Figure2.22. The latter is more similar to static load.A real impulseload will be
somewhere in between. The infinitely high pressure during a very short time is called
the characteristic impulse.

PressureP PressureP
A 4 D) A
|

Time, t Time, t
(a) (b)

Figure 2.22. Two extremeases of theressure impulse: & haracteristic impulse
and b)pressurdoad.

The response to a more general impulse can be explained by using damage curves.
Those are curves that show the same damage for different combinations of forces and
impulses. Theconcept of damage curves ai@ther discussed and presented in
Section2.4.2.7 The characteristic impulse will be used in this thesis to estimate a
response on the safe side when estimating the external work done.
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2.4.1.4 Work

Work equilibrium is a weHestablished method for analysing the response of a
structure subjected to an external force. It relies on the law of energy conservation,
which says that no energy can disappeatr, just transform. If a force acts on a structure
the resiting work must be converted into kinetic or potential energy within the
structure. Therefore, the method puts the external Wdtkcaused by the external
load, equal to the internal wok made by the structuree.

We :\/\/i (2'10)
The external work is force times distance, for example a force that moves an object. It
can also be an impact where kinetic energy is transferred into potential energy. This is
more similar to an explosion, wieean impulse load strikes a structure and causes it
to absorb energy by deforming.characteristic impulse has a very short duration and
the external energy can therefore be assumed to be the kinetic energy of the structure.
This means that no energyresisted as internal work. As soon as the impulse acts for
a longer time, the structure will absorb some of the energy and the external work done
will be smaller than for the characteristic impulse. The kinetic energy for a body with
massmis

g ="MV (2-11)

where v is the velocity of the body. By using equati¢®6) and assuming a
characteristic impulse load, tlesternal work can be described by the kinetic energy
of the impulseas

2
W, = E, :2'—rkn (2-12)

Energy is absorbed in the structure by deformation. Consequently, the stiffness of the
structure and its ability to deform is important for the final respo\s described in
Section 2.3, three idealisations of materials are used. They will behave slightly
different, and the internal work will be:

2
Elastic W = k;e' (2-13)
Plastic W =Ru, (2-14)
. KUz
Elasto- plastic W = — + R U (2-15)

The internal work can benterpreted as the area under the falisplacement curves
shown inFigure2.23.
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Figure 2.23. Three different idealised material relations; linear elasiigal plastic
and elasteplastic.

The maximum deformation can later be found from the work equilibrium
equation(2-10). The deformation in the elaspbastic model will follow the equation
(2-13) until the reaction force reaches the yield reaction when the total deformation
needs to be considered.

|
u, =—° where w= ‘/5 (2-16)
mw m
I 2
u, =—= 2-1
pl szn ( 7)
B _a Ueper O 12 R, .
uep - ueppl +uepel - %‘pl - 2p §+ uep,el - szn +§ if utot > uep,el (2'18)

It is most oftenpreferable to use a ductile material in extreme load situations, as long
as the obtained displacemer@n be allowed. The ductile material will deform and
dissipate more energy. The structure will be damaged through plastic deformation and
will require reparation. However, this can be overlooked as long as safety is
guaranteed for involved functions andopk. To avoid total collapse and ensure
safety, the deformation of columns for example must be limited so that they do not
fail through second order effects.

2.4.1.5 Strain rate

The closera structure is to an explosion, the highlee amplitude and the shortére
duration of the load. Consequently, structures close to an explosipmesubjected

to a very intense, impulsive loadn this case thestructural response differs
considerably ta static load responséhe design approach must therefore also differ
The loading from an explosion can be up to 100 million times faster than a static load
The high velocity of an explosidnad results ira very high strain rate compared to a
case with static loading. For static loading the value of strain rate iscst6dis* and

for blast loading somewhere betweerd §0and 16 s* as illustrated irfFigure2.24.
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Figure 2.24. Approximate strain rates for differelaadings,based on
Johanssor§2000).

A change of strain rate can also result in a change of properties for the material. It is
known that the mechanical properties of concrete are affected by the rate of loading.
Much research has been done on this stibjearder to establish a relationship for the
Dynamic Increase Factor (DIF), which is the ratio between static strength and
dynamic strength. These studies show that the increased strain rate also results in an
increased material strength, as showRigure2.25. The value of the DIF differs a lot
between tensile and compressive strength and it is also hard to evaluate the different
test results that cause a large scatter.

A

N

=

Dynamicincreasefactor, DIF

0 >
10%10710%10°10%10°10%210%1 10 16 1C°
Strain velocity#, [s]

Figure 2.25. An approximated relationshipetween the dynamic magnification factor
and the strain Jecity for compressed concrete, based on
Johanssor§2000).

The effects due to the change in strain rate are divided into two main :efisctaus
effects for lower strain rates and structural effects for higher strain rates. These effects
are not discussed in here and for more information the reader is referred to
Johansso2000). The change of strain rate is also shown to affect thiene@ment

steel, which results in some increase of yield and ultimate stress for higher strain
rates. Strain rate f®r exampleconsidered in the American design cobeD (2008)

but is neglected in this thesis.

2.4.1.6 Wave propagation

Explosions are rapid presses in which the whole structure may not be active. For
instance, after an explosion the maximum moment in the front wall of a box structure
can occur before any of the impacts are realised by the back wall. The information
travels through a material dsoth a longitudinal anda transverse wave, see
Figure2.26. These are commonly referred to as pressure wave and shear waves. Shear
waves cannot occur in liquidy gasesand are weak in comparison to the pressure
wave Laine (2012
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Figure 2.26. Waves through a specimefh) material at rest(ll) pressure wave, (Ill)
shear wavelLaine (2012)

According to Laine (2012) pressure wave has the vely

_ / E
Cp = r @1- n?) (2-19)

whereE is the elastic modulus andis the density of the material. This should be the
case if an axial force acted on the beam. Howelerjnformation ina beamoaded
perpendialarly to its longitudinal axiss more likely to be transferred by transverse
waves to the supporfThe speed of a shear wave through a material depends on the
mat eri al 0s Gslhieed20l2modul us

(2-20)

G= ) (2-21)
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2.4.2 Equivalent SDOF system
2.4.2.1 Introduction

A single degree of freedom systeabbreviated SDORs a convenist model to use
when analysing dynamically loaded systems. It consists of a body with thenmass
and a spring with stiffneds seeFigure2.27. The body is only free to move in one
direction and the position can be described witle coordinate, Biggs (1964). This
body isalsoconsidered completely rigid with no internal movement withreality
vibrations of a system will always have some damping from internal friébimes

for example. Therefore, the magsring system isfeen complemented with a damper
¢, whichwill decrease the amplitude for every oscillation.

l F(t) l F(t)
(a) (b)

Figure 2.27. Forced SDOFsystemsa) damped b) undamped

The SDOFsystem can either viate freely or be forced by a tirgependent force. If

the system is subjected to explosion loading, initgally forced todeformfor a very
short time. Aftera short timethe externalforce will disappear and the behaviour is
better represented by aély vibrating systemAlthough the shock wave forces the
system to deform during the first milliseconds, the maximum displacement and
section forces can often occur much laldiis depend on the load and the properties

of the structure.

The maximumdispacementis of interest and they occur very soon after the load
arrival. The effect of damping will dew on the first oscillation, where the maximum
displacement normally occurs baffects the later oscillations more. Therefore, it is
not necessary tonclude dampers when consideringaximum displacement as a
result ofexplosion loads, Johansson and Laine (2009). However, it is important to
realise that dampers should be included if the continuing state of vibration is to be
considered. In a real structuit is not likely that the maximum values ocetiter the

first oscillation With that in mind, damping effect rmainly neglected in this thesis
apart from in the theory section for comprehensiveness.
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2.4.2.2 Equation of motion

If a forced damped SDOF systesncionsidered, it is recognised that digplacement
and velocity will create resisting forces from the damper and the spring. If the body is
accelerating it will have an inertia force in the accelerating direction according to

Newtondés second | aw.
th .
Rspring:k@'l
F(t) —
—Pp m
4—
Rdamper:C(j¢

Figure 2.28. Free body diagram of a SDG$ystem.

As velocity and acceleration are the derivative and second derivative, respectively, of

the displacement with respect to time, the equatf motion can be found as,
mét+ e+ ku= F(t) (2-22

from established force equilibrium.

2.4.2.3 Transformation into an equivalent SDOFmodel

A structure hasnultiple degrees of freedorfMDOF) but it canbe turned into an
SDOF system by hoosi ng a fisystingm@n eguivalemtmass, a n d
damper and a resisting for@&ggs (1964) The system poinis often chosen as the
centre point or the point where thésplacementis largest Johansson and lree
(2009) The relation between the naaneters in the equivalent SDOF system and in
the MDOFsystem can be described with transformation factors.

Transformation factorsare derivedfrom an assumed deformation shapé),
Johansson and Laine (2009hey mst be chosen with regard to support conditions,
stiffness distribution, load profile and material model. Therefore, advancedicalalyt
solutions may be necessafgr complex loading cases and when the stiffness
distribution varies. Since the factors aréredtly influenced by the assumed
deformation shape, they must be individually derived for every structural elamgnt
load condition

Since the damping effect is neglected, see SetbR.1 three transformation factors

are of interest when converting a structural element into an equivalent SDOF system

for impulse loading. They are denoted withw&ith index to the parameter they affect

m, =k, m (2-23)
ke =kik (2-24)
Fe = kF F (2'25)

Where letters without index are the structural elements real mass, stiffness and force

respectively and inder stands for equivalent parameters in the SB@stem. By
considering energy conservation for the structural eleraedt the corresponding
equivalent SDOF the factors can be derived.comes from the conservation of
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kinetic energy, & comes from conservation of internal energy amd from
conservation of external energy. According to Biggs (1964) the transformation factors

for internal and external energy are equal

k. =k, (2-26)
The transformation factors can be found from,
PR eyl C (2-27)
mL e
(2-28)

x=L
1 ﬁ—“(x) dx
L x=0 uS
the derivation is shown in e.g. Johansson and Laine (2009). By implemégiay
in equation(2-22), the equation of motion for a structural element can be written as

k. =

K- MéH cdt+ ku = F(t) (2-29)
where
k
k =_m _
mE k. (2-30)

Values ofthesetransformation facter for some different load cases and material
models for beams arslabs can be seenTrable2.1, Table2.2 andTable2.3.
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Table2.1. Transformation factors for a beam subjectea foointload. From
Johanssorand Laine(2009)

Point load on beam element
R e 4

Elastic deformation curve

Ky 0.486 0.371 0.445 0.236

k. 1.000 1.000 1.000 1.000

Kye 0.486 0.371 0.446 0.236
Plastic deformation curve

Ky 0.333 0.333 0.333 0.333

k. 1.000 1.000 1.000 1.000

Kue 0.333 0.333 0.333 0.333

Table2.2. Transformation factors for a beam subjected to uniform.|é&dm
Johansson and Lain@2009)

Uniformly distributed load on beam element

i e S e S ) P
4 EON /| - ¥ MOy /| -

Elastic deformation curve

Ky 0.504 0.406 0.483 0.257

k. 0.640 0.533 0.600 0.400

Kue 0.788 0.762 0.805 0.642
Plastic deformation curve

Ky 0.333 0.333 0.333 0.333

k. 0.500 0.500 0.500 0.500

Kue 0.667 0.667 0.667 0.667
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Table2.3. Transformation factors for a plate subjected to af@amly distributed
load, Based on Augustsson and Harenst@n10).

Uniformly distributed load oslabelement

Q
Q
ST

W w

Elastic deformation curve

k., 0.250
k. 4fp?
Ky 0.617

Plastic deformation curve

k,, (1+a/w)/6 (1+a/w)/6
K. (1+a/2w)/3 (1+a/2w)/3
Ky (L+a/w)/(2+alw) (1+a/w)/(2+alw)

The transformation factors have a good agreemmtit reality when an elastic
response of the structure is assumsgk Augustsson and Harenstéi10). In the
aforementioned thesis, significant divergence between hand calculations and FE
analyses is found for beams assuming ideal plastic behaviouomlplhtes assuming
both plastic and elasfolastic behaviour. This is believed to be influenced by the
assumption about constant deformation shape and the influence oflimealti
response in beamMloreover, it recommends that more studiesthese phemoena

must be carried out. Tharoblems with transformation factors aksoaddressed by
further studies in Chaptdr

2.4.2.4 Work

A system in motion is affected by external, internal and kinetic energy, which must
always be in equibrium. The transformation factors described in SecBoh2.3
relate the real energy in the system with the energy in an equivalent SDOF system.

w, =X M (2-31)
2
W =k Ru (2:32)
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We = kF Fus (2'33)

As shown in sectio2.4.1.4 the external energy of a SD&dem for an impulse
load can be expressed as:

¢
o (2-34)

SDOF _\p/ —
W, =W, =

This assumeso energy is lost from deformation and thhé work done by the
external force is equal to the exterradl energy vill become kinetic energy. The
problematic part is deciding which mass should be usequat®n(2-34). Johansson

and Laine (2009) have used=knr A niThis results in an equivalent SDOF energy,
which will only be adequate if external and internal energy levels are compared in the
SDOF system. However, if the SDOF energy is going to be compared with another
analysis, it is necessary to consideuaipn of motion for the equivalent SDOF
system in its basic form when investigating and comparing energy levels with a FE
solution i.e.

k btk ku= k. F (2-35)

instead of using the simplified exgssion in equatiof2-29). In order to derive the
real work for an SDOF model, it is necessary to go back to the definition of impulse
in SectionO.

| = h:(t)dt = mv (2-36)

For an equivalent SDO8&ystem this should be multiplied with the transformation
factorsi.e.

o]
| SPOF = ke B (t)dit = A, m, (2-37)

to
A characteristic impulse means that

I, = ﬁ=(t)dt:i('bc'b (2-38)

fo

and hencethe momentum for the equivalent mass in the SB@fem can be
expressed as

k,mv, =k, (2-39)

and the square of thmidpoint velocity can be obtained as
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° 2
V2= ake |, g (2-40)
¢KmM =
If this is inserted int@quation(2-31) the kinetic energy becomes
|2 | 2
Ek = k /(E = k /(F (2'41)

2k _m

m

2k _-m

mF
If this is compared with the expression used by Johansson and Laine (2009), it can be
seen that the additional terkais not considered and that it would result in a too high
energysince k= < 1.0. Moreover, the internal work is also overestimated since a
transformation factor is only used on the kinetic energy.

Calculating the energy incorrectly will not affect theeggy balance nor theesulting
displacementsince the transformation factor for the load cancels out when
considering the individual parts of the equation of maqti@n

| 2 ku?
ok mKe ke

E = _—
‘ meM 2

=W (2-42)

Nevetheless, if the absolute energy in a&fkalysis and an equivalent SDO¥stem
is compared it is necessary to calculatedkirnal and internal energy as shown in
equation(2-41) and(2-42).

2.4.2.5 Dynamic reaction

In order b determine the maximum shear forces in slgstem it isof interest to
determine the dynamic reactiéorce at the supportdhe equivalent SDOBystem is
modelled to have the sardesplacemenas thesystem point in theeal system, buthe
internal reaction force ithe SDOFsystemis not necessarilythe same as the real
reactionforce In order b obtainthis reaction,it is necessaryo set up a dynamic
equilibrium wherethe inertia forcd(t) is considered in the calculation§he irertia
force has the same shaps the assumed deflection shape of the strucithie
magnitude and the position of the resultant of the inertia force can be deterasned
shown in Appendix B.2Moment equilibrium can be established arotimgresultant
and an expression for the dynamic reactican beobtaired In Biggs (1964) this
dynamic readbn is solved for beams and tweay slabs with different kirgl of
boundary conditions and load cases for both elastic and plastic an@lysiglata is
then presemd in tables.

For clarification,an example 6a simply supported beam widvenly distributed load

can be studied, sdagure2.2%. To establish dynamic equilibriyrhalf of the beam

is considered as shown kiigure2.2%. It is knownthat in the middle of the beam the
shear forceSis equal to zero and the dynamic bending moment can be expressed in
terms of the resistanéeas:

my == (2-43)
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Figure 2.29. Determination of dynamic aetions.Based orBiggs(1964).

As mentioned abovehe distribution of the inertia force corresponds to the assumed
deflection shap&hich is used to determine the position of the resultant. For a simply
supported beam with an evenly distributed |dhs shape can be expressed as:

F(x)= ;—S(U‘x- 20L%% +x°) (2-44)

When the posion of the resultant is knowrsee AppendiB.2, moment equilibrium
is establishe@round the resultant of the inertia foeed the following expression is
obtained:

.61 1561, 1,3
VO L-m - &2 - 218=0 2-4
192 ¢ 2802 a2 (2-49)

Equation (2-45) is then solved fol with help of the expression fahe dynamic
bending moment andn expressiorior the dynamic reaction in terms of load and
resistance is obtained, séquation(2-46).

V =0.39R+0.11F (2-46)

Both R andF in this case are functions of time but this equation must also be valid for
a static case where the shear fovcsehould be equal to OF5 If equation(2-46) is
studied and the fact thR=F in case of static loading can be seen that this equation
also holds for this case.

The same procedure can be performed for various support conditions for plastic and
elastic cases. Thesre tabulated in Biggs (1964). The dynamic reaction for a simply
supported beam with ideal plastic behaviour can be written as

V =0.38R+0.12F (2-47)

Fortifikationsverke{(2011) has derived an exgssion shown inAppendix B1, for the
reaction force at the suppdar a simply supported beaas

(2-48)
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wheresr anday, are the transformation factors for force and mass respectiMaily.
methodis very similar to that of Biggs (1964)

k. =0640 k_=0504

& k25 (2-49)
1% Ke 8F FRU 0.094F +0.406R

K= Y]

and for the plastic case

k- =0500 k., =0.333

8 k%0 2 (2-50)
Vv :1@- /LF§F Ke Ru 0.125F +0.375R
2@; km = km g

However, an advantage 6for t i f i kat i on s thatitlkete thebdesigmep pr oac h
use a varying deformation shamgassuming the transformation facgover time and

hence the position of the resultanay not have to be calculated fall displacement

shaps that might occurlt is also clearer what actually affects the support reaction

and will therefore also be used in this thesis

2.4.2.6 Equivalent static load

A dynamic load can be translated into an equivalent static load in order to make it
more convenient to calculagectionforces. Moreover, designers are generally more
familiar with static loads. The corresponding static load is obtained by dgdiuin

load that generates the same external work as the impulse load. In line with definitions
of internal work Section2.4.1.4 different expressions will be obtained depending on
which material response is assumed. The edgemi static load corresponds to the
response that is obtained when the maximal deformation is obtained and consequently
does not follow the behaviour up to that point. The equivalent static load can be
written as

Qy =l w where ¥ = \/? (2-51)
m

2
I k

Q, = (2-52)

2mu,,
for elastic and plastic response respectivdlyhansson and Lain@009). I is the
characteristic impulsem is the massk is the stifness anduy is the plastic
displacementThis corresponds to the ultimate resistance in the structure i.e.

Q. =ku, (2-53

Qu =R, (2-549)
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When the equivalent static load is established it can be applied on the structure and
the moment and shear force distributions can be found. The static equilibrium
calculations mean that the reaction forces on the system are not gowethedshme
parameters as the normal static approach. This gives the reaction force in the support
as

_Qel_h -
V, = 5 - 5 (2-59)
v, =% R (2-56)

2 2

L kul
T (2:57)

QulL L
M= g =R'§ (2-58)

The dynamic bending moment is the same as deriva&iggs (1964). However, the
support reaction is higher according to this metbadethe positive phase of the
pressure wave has passedk.e.0. Moreover, the equivalent static load does not take
the early shear force resulting from the inertia focest o account as
Fortifikati onsyv e $ektiert2d.2.5 Jalampsson and hans (2009
explain that high shear forces can initially occur close to the supports and that these
must be further investigated@his statement refers to this phenomenon of initial high
shear forces.

Since the plastic equivalent load is governed by the plastic deformation, an upper
limit to the dsplacementmust be introduced and will consequently be the failure
criterion. The posdiility of large rotational deformations will decrease needed
equivalent static load and herite reaction forces, Johansson and Laine (2009). The
elastic approach is rather straight forward as the moment and shear capacities are
compared with the maxium load effect. However, the maximwsactionforces in a

linear elastic analysis do not depend onpgheametersaken into account in a static
analysis The maximum field moment in a simply supported structure with elastic
response can be calculated as

s
Mfe.:Qe'LzlkMLZIQ f (2-59)
' 8 8 8 m
For a rectangular section the stiffness for an equivalent SDOF system can be written
384El 384Ebh’
k=k = - 2-60
F 52 T 60l (299

And the mas for the equivalent SDOF model is
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m=k,r GhQ (2-61)

The maximum field moment can therefore be calculated to

id? | 38%&bk _ith | E
M, = | = | 2-62
el g 60k .rbhl* 101k, .7 (262

This shows that the maximum field moment in a structure with elastic response is
independent of the length.

2.4.2.7 Iso-damage curves

The worst case scenarios are defined by extreme cases and these are often used for
design. The two extreme cases for an impulsd bra described iBection0, which

are infinitely high pressure with infinitesimally short duration or a low pressure for an
infinitely long duration. The response to a more general load, as ségune2.30,

can be obtained by using ismmage curves. These are curves that show the structural
response to different combinations of pressure and impulse. The curve defines the
combination of pressure and impulse that will cause a certain deformalim, @an

later be used to investigate if the structure will fail. As long as the actual pressure and
impulse is lower than the limiting line, no failure is expected.

PressureP
A

P:

v
—

1

Figure 2.30. A general pressuréime curve

An iso-damage curve can be found by solving the equation of motion for different
load cases and thereby obtain a failure line for any combination of pressure and
impulse. As a consequence, the shape of the curve is depemdéné onaterial
resistance and the load shape.-damage curves are constructed by e.g.
Nystrém(2006) and Johansson and Laine (2009), the reader is referred to those for
more information. The general appearance ofdamage curves for different load
shaps are shown irFigure 2.31. It is often convenient to express pressure and
impulse with ratios between the actual peak pressure and impulse intensity and their
characteristic values.

i
g =" (2-63)
Ik
R 2-64
%= p (2-64)
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Figure 2.31. Iso-damage curves for 3 load shapes. Base&i@uthammer
et al. (2008)

In many cases it is adequate to use the characteristic impulse. Johansson and
Laine(2009) give an estimation of how large the error will be when using the
characteristic impulse compared to the real Iddds is in an elastic casefunction

of the structual period T and the load duratioh, seeTable 2.4. The type of load
curve is defined byn, which dendes the power of the load curvg.is the ratio
between the actual impulse and thareteteristic impulse ang is the ratio between
peak force and the characteristic peak f@sshown in equatiof2-63) and(2-64). It
means that if the ratio between thieuctural period and the load duration is higher
than the number in the table, the percentafgdifference in displacement showm

the left column can be expectdgor plastic response, no structural period can be
determined and the difference in degtment is only a function @f and g and is
shown inTable2.5.
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Table2.4. Displacement errofor elastic responsehen using the characteristic

impulsecompared to the real load curve. Fromhansson and

Table2.5. Displacement errofor plastic reponsewhen using the characteristic
impulse compared to the ridaad curve. From Johansson and
Laine(2009).

%%l | gl ¢ &[] &[]

n=0 n=1 n=2

1 1.005 100 - -

2 1.010 52 70 77
3 1.015 35 46 52
4 1.020 27 35 39
5 1.025 21 29 32
10 1.049 11 15 17
15 1.072 7.7 10 12
20 1.095 6.0 8.0 9.0
25 1.118 5.0 6.7 7.5
50 1.225 3.0 4.0 45
75 1.323 2.3 3.1 3.5
100 1.414 2.0 2.7 3.0

38

Laine(2009).
@ | gll | T_g | T_1g | T_1g¢
b g |t 2g |t 3g

n=0 n= n=2

1 1.01 12.89 10.60 8.84

2 1.02 9.22 7.45 6.13

3 1.03 7.51 6.10 5.00

4 1.04 6.52 5.33 4.35

5 1.05 5.86 4.75 3.90
10 1.10 4.20 3.41 2.78
15 1.15 3.48 2.82 2.29
20 1.20 3.06 2.47 1.98
25 1.25 2.78 2.23 1.77
50 1.50 2.10 1.56 1.18
75 1.75 1.80 1.23 0.91
100 2.00 1.57 1.02 0.74
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In general, it is likely that the structure has more than one failure mode with another
governing equation of motion, Krauthamnetgal. (2008). This can be incorporated in

the diagram easi | ycurveWwhl thende athreshold cuevédod thed a ma g e
lower values as seen Figure 2.32. Failure will occur in both failure modes if the
combination of pressure and impulse is in the upper right quadrant. In the example

given, failure inonly mode 1 will occur for low impulses with high pressuraile

low pressure with long duration will cause the structure to fail in mode 2.

254
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(€]
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a1
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0.001 0.01 0.1 1
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Figure 2.32. Iso-damage curve®f two potential failure modesThe lower values of

these will create a threshold curve indicated with a dotted Based on
Krauthammer eal. (2008).

2.5 Direct shear
2.5.1 Static response

The direct shear phenomenon has been observed in static loadings with sayall sh
span to effective depth, i.e. in deep memb#&riz and Raths(1965 as cited by
Ross(1983). Direct shear can occur in areas with geometrical or load discontinuity,
Crawford et al. (1999), tending to be brittle and to cause a sudden failure. It is a
localised shear response of a structural concrete element characterised by cracking
and slippage almost perpendicular to the longitudinal axis. Mattock and
Hawkins(1972) gave a hypothesis of the phemmon from experimental testing.
Firstly, small inclinedcracks develop along a shear plane, Bigeire 2.33a. These

cracks will define compression struts analogous to normal shear cracks but much
smaller, both in length and width. The compression struts will carry the applied shear
force by compression and transverse action since they are surrounded by uncracked
concrete on both sides. Force equilibrium of such a strut can be established, as shown
in Figure2.33c, whereV is the applied shear forc€,is the @mpression component

of the resistancey 0Ois the transverse resistance of the stiutis the tension
reinforcement force anl is a potential tensile normal foro&s the load increases the
struts wil/|l rotate and c¢comp@arphases Flexucar eat i ng
reinforcement will be strained and work in dowel action when slip takes place. A
consequence of the rotation is that the ends of the cracks will propagate vertically. A
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failure plane can therefore either form in the shear plane or & plarallel to the
shear plane Eventually, the concrete compression struts will fail in combined
compression and shear action, and the reinforcement steel will yield, causing the
whole section to shear off with a more or less vertical failure surface.

o
i o

<

i

RS

@) (b) (©

Figure 2.33. (a) Small diagonal cracks form along a shear plafs they rotate, the
cracks will propagate slightly vertically (b). Hence, the actual failure
can occur in a parallel @ne to the original shear plan€he resistance
can be described withstrut and tieanalogy(c), based orMattock and
Hawkins(1972)

Consequently, vertical stirrups will not contribute to the shear resistance except by
confining the concrete and providj support for the flexural reinforcement which acts
in dowel action.

Concrete shrinkage or accidental damage can causeexiptiag crack through the
depth of the member. The direct shear resistance will always be lower for a shear
plane with an existig crack since the resistance is only governed by shear transfer
along the cracks, aggregate interlocking and dowel action of the reinforcement,
Mattock and Hawkins (1972). However, if the section is heavily reinforced, it will
have a similar response ta anitially uncracked section. In this thesis shrinkage of
concrete will not be considered and the elements ssan@ed to be intact when
loaded.

2.5.2 Dynamic response

Dynamic direct shear failures have been reported in experimantieger

etal. (19801984) and Slawson (1984), séggure 2.34. These are observed close to

the supports short after the arrival of the shock wave for highly impulsive loads.
According to Low and Hao (2@) a high stiffness with a short span increasesighe

for direct shear failure. It has also been shown tHatd with high amplitude fora

short duration increases the risk for direct shear failure. If the structure survives the
direct shear mode, it will go into flexible mode. The early behaviour béam
subjected to an impulse load must therefore be studied in order to explain what causes
thesetypesof failures.
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Figure 2.34. Slab that has developed direct shear behaviour, Slawson (1984)

It has een shown irprevious research (Slawson 1984eger and Getchell 1980

1984; Johansson and Lain2009, Nystrom, 2006; Augustsson and Harensg0mp)

that the initial deformation shape for a structure subjected to blast loading is not the
same as that pdected at maximum deformation. Within the first few milliseconds
after load arrival the deformation shape is characterised by a nearly rigid body motion
of the centre part of the element as showkigure 2.35. The undeformed pes of

the element close to the supports have not deformed as much, which creates a large
difference in deformation over a small length. No flexible behaviour is observed in
the early time span, which suggests that the direct shear failure mode andiltie fle
failure mode can be considered independent of one another.

L] L]

Figure 2.35. Research has indicated that a structural element subjected to an impulse
load will initially deform as a rigid body motion.

The theory behind dynamic direct shear failure mode is not well understood. One
possible reason of the early behaviour is explained by Ross (1983). He uses simple
elastic wave propagation theory to explain reflections of the shock wave approaching
the elemet) seeFigure 2.36. After the wave has progressed through the depth of the
member, it encounters a boundary between the edge and the air or supports. The wave
is transmitted into the supports while it completely refletthe ede of the beam in
between the supports since the impedaoicair is close to zero. As a result, the
relative difference between the velocities will be twice the previous velocity, which
will cause a velocity discontinuity close to the suppartd therefee a high shear

force.
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Figure 2.36. Ross (1983) explains the dynamic direct shear phenomenon with elastic
wave theory in which the wave is transmitted at the supports and totally
reflected in the centre. This generates a relative difference of double
velocity in the centre part compared to the velocity at the supports.

Another way of explaining the early behaviour is made by Johansson and
Laine( 200 9) and pr evi;d\yssrom,M2089f Augudstssontandke s e s
Harenstam,(2010). They realise that the information of a load travels with an
approximate velocity of 3500 m/s in concrete. As a result, the centre part will not be
aware of the support conditions before informatidmout ths has reached them. The
boundary conditions can tlefore be seen as time dependent, where thewiéedly

not activeand later moves with the information speed in the struclire.governing

speed should probably be the velocity of a shear wave.

Since the centre part moves much more and faster than the supports, a discontinuity
region will occur close to the supports with very high shear inertia forces. These can
be calculated with for example, Biggs (1964) or the equivalent staticcloackpt
descrbed inSection2.4.2.6 However, it is important to remember that these methods
are only valid when the assumedatenation shape takes place.

Ardila-Geraldo (2010) stated that a structure will fail in shear if the shear deisyan
larger than the capacity. He investigated the actual shear demand at the supports by
comparing with experiments and found that the support reaction can be found by
varying the deformation shape and stiffnéssan SDOF modelHe derived an
expressiorfor the initial stiffness by taking the rigid body motion into account. This
expression was later calibrated by FE analysis and experimental téstipgoposed

that the stiffness should be taken as
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100k 3- 9= 8if t<0.IT
? T (2-65)

k

Pk, itz oar

whereT is the structural period andis the theoretical bending stiffness assuming the
elastic flexural displacement shape. The relationship is illustratédume2.37.

4 Stffness k
10ks

» Time, t
0.1T

Figure2.37. Stiffness variation derived b&rdila-Geraldo (2010), assuming a near
rigid body motion.

The support reaction is thealculated with a modified Biggequation
V(t) =aF(t) + bR (2-66)
wherea and b have been calibratdcom FEanalyses and

002¢ 6¢0.12 whent¢O0.1T (2-67)
a=05-b (2-68)

It is important to find the correct initial reaction force at the supports in order to
investigate the direct shear behaviour. Therefore a study on the shear force at early
stagewill be carried out in Chapte.

2.5.3 Simplified model for dynamic direct shear

An SDOFmodel can be used to explain the behaviour of direct sir@dogousiyto

the flexible caseThe system point should be takén a point very close to the
supports.The shear force at the support should be etaiuand used in this model.

This is done by using the flexible wafion of motion, equatio(2-29), and calculating

the dynamic reaction force with Bigggjs For t i fi kati onsver ket ds
load method, described Bectiors 2.4.2.5and2.4.2.6 Since the direct shear happens

very early, before any significant flexible behaviour, the flexible SDOF equation of
motion and the direct shear equation of motion, Bogng2-29) and(2-69) can be
considered uncoupled.

The initial responsewhen a structure is subjected to an explosion is a rigid body
motion, which means that the transformation factsesd tatransformthe structure to
the single degree of freedom systenclisse toknr = 1. The shear slipD at the

CHALMERS, Civil and Environmental Engineering Ma st e 2BZ103 hesi s 43



supports can then be calculated with the simplified equation of motion for the direct
shear caseseeFigure2.38. As for the flexible case, damping is neglected.

M, @&+R =V(t) (2-69)

1 &(t), 8(t). O(t)

Ms

l V(t)

Figure 2.38. Equivalent SDOFnodel for direct sheabased orCrawford et al.,
1999) The stiffnesRs can be taken from the @it shear resistance
function inFigure 2.39. Dampingeffects are neglected

The resistancdss is taken from the direct shear resistance function developed by
Hawkins (1974). He used static tests to find a relationship betweehehe slip and

the shear stress. The relationship was later modified by Krauthammer (1986) in order
to take rate effects and normal forces into account by applying a factor 1.4 to the
relationship found by Hawkins. The relationship is showrFigure 2.39 and is
explained below. In this thesis, rate effects have been ignored to give results on the
safe side.
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Figure 2.39. Shear resistance versus the sliprag a shear plane. The enhanced
curve takes strain rate and normal forces into account. Based on
Mattock and Hawkins (1972) and later modified by Krauthammer
(1986).

The resistance function is an empirical model based on static tests. The first segment
from O-A has an elastic response until a slip of 0.1 mm has been reached. For shear
slip in this range, the influence of reinforcement dowel action can be neglected. Thus,
the elastic part is independent of the amount of reinforcement crossing the shear
plare. For very low slips, the slip can be approximated with the crack width. This
leads to the formulation of the shear resistance in segrens@eTable2.6. The

first equation can be used for both+oracked and uncracked sects. For larger

shear slipsD>D;, dowel action becomes significant and should be considered.
Between A and B the shear resistance will increase until a shear slip of 0.3 mm is
reached. The resistance will remain constant until a slip of 0.6 mm is reached. For
large specimens, thegikau can be somewhat longer. The stiffness is negative
between C and D, independent of the amount of reinforcement and only slightly
dependent on the concrete strength. The resistance will later remain constant until a
failure shear slignaxis reachedThis segment is merely dependent on reinforcement
dowel action. The resistance function equations are showabile2.6.
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Table2.6. Definition of Direct Shear Resistance Funct@mmmverted into Sunits
seeFigure 2.39. Based orCrawford etal. (1999)

Region Definition

0-A The response is elastic, and the s|dp@f the curve defined by the she
resistance/,, for a slip of 4 =0.1 mm. That resistance is given by {
expression

t,=1.138+0.157f,
Where botht, andf; are in MPa. The initial pashould be taken as elas

to not more than, ¢ %”‘

A-B The slope of the curve decreases continuously withreasing
displacements until a maximushearstrength,z., is reached at a slipf
D= 0.3mm. The maximum strength is given by the expression

t,=0664/f +08r,f, ¢035f

wheretn, fc andfy are in MPa and . is the ratio between the total area
reinforcemencrossing the shear plane divided by the area of the (g
is the yield strength of the reinforcement crossing the plane. The dirg
of the reinforcement is natiscussed but should have an impact on
resistance.

B-C The shear capacity remainenstant with increasing slips. C correspo
to a slip of3= 0.6 mm.

C-D The slope othe curve is negative, constamtd independent of the amou
of reinforcement crossing the sheéarne. The slope is given as

k, =0.543+0.0295f,  |N/mm?]

D-E The shear capacity remains constafiie deformation at E varies withe
level of damage, with a failure at a slip of

D,y = 0.423¢" - 1)
Where
5.18

NATN
And dy is the bar diameter in mm. The limiting shear stress is defing
t, = 0.85%'6“’8@”

CA =
whereis Agp, the aea of the bottom reinforcemerf; is the area othe

concrete section andg is the ultimate strength of the botton
reinforcement
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Chee (2008), evaluated previous carried out experiments by Kieger and Getchell
(1982), with the two SDOF modelShese experiments were performed on slabs and
the resistance function was obtained by combining the direct shear resistance in each
direction. Chee (2008¥ound goodagreementind could use the SDOF models to
predict which failure mode #t would occur. The resistance function was taken as:

R=R + Ry (2'70)

WhereR, andR, are the resistance function for the slab in each diredRehability
analyses have also been performed with this resistance function by Low and How
(20@) with good &curacy.

2.5.4 Design approaches
2.5.4.1 Swedish design approach

The concepts of direct shear, described by Swedisttification Agency,
Fortfikationsverket,(2010), are presented in this sectifiirst it is shown how the
shear force effect is calculated and then lbe resistance is calculated. The shear
force should be checked for the initial elastic response and in the-glastic
oscillating phase.

A shear span is calculated by taking the early rigid body motion into account and is
used to give a lower limitor when normal shear resistance can be used. If the shear
span to effective depth is less than 1.5 a strut and tie model should be used according
to Boverket(2004. This could be seen as the direct shear resistance. The limit is
defined as

% ¢15 (2-71)

The procedure will not be explained in detail, tmatrth mentioning that the strut and
tie method does not take into account that the crack is almost veRaramore
information the reaer is referred to Chapter 6 Boverket(2004).

The normal approach for shear design is described below. The maximum total
reaction can be calculated as:

& K20 . . kP . .
Vtot:?- kF _pacm-l-kiqeq@& (2_72)

m = m

QDO

wherea andb arethe length and width of a slab and farbeama is the length ant

is the loaded width of the bears: and s, are the transformation factors for the
element, see sectidh4.2.6for values,geq iS the equivalent static load apds the
peak pressure. Plastic response is assumed if

P >2
— 2-73
0 (273

and the plastic transformation factors should then be used. From this, the support
reaction can be calculated as
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Vs4 = KVt (2-74)

wherek, depends on theefiormation shape of the structure. For a simply supported
beamk, will be 0.5.

The shear capacity shall be examined in the shear ispamlf the distance between
the support and zero shear force. It can be shown that the shear effect at this point is
half the support reactiosgeAppendix Cfor derivation

V, = 0.5k V;or (2-75)

The shear spamjcan be calculated as

af, =0.025+ 0.25\/0|T['3)q for simply support: (2-76)
et =0.01+0.35 /qeq for fixed supports (2-77)
p

wherel is the length of the spaneqis the equivalent static load apds the peak
pressure. For slab4, should be replaced by the shorter widithsince it gives a
smadler shear span and a higher shear effect. From this exprassammbe identified

that the shear span is increasing for lower pressures. Moreover, it is cleasitigat
equation (2-71) the limit for using normlashear force resistanc®r a simply

supported beans defined as

a _4 lga 8L
—+ =39.025+0.25 |—0—¢15 2-7

The capacity of a concrete section without influence of shear reinforcesreefimit
for a form of crushig of compression strut amsldefined as

V. =k bd (2-79)

whered is the effective depth arkl is depending on the shear span, phetection
leveland reinforcemeramount.

k. =k

C t

f
_r (2-80)
S

Heresis a factor for the protection level used by the Swedish military and depends on
how much damage the exposed structure can be aliowed

s=12 for protectiorievel B1,B2andB3
s=1.0 for protectiorievel C

andf, is afactor thatdepends otthe amount of reinforcemeryt)(
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r-01

f, =07+ (2-81)
_ A
where r=—2 2-82
G (2-82)
and kgdepends on the shear sgand the concrete strength.

k =k ,=025f, if ‘Zf <045 (2-83)

k =045%0 it %2045
T a d (2-84)

d

If the shear force capacity is not sufficieng. Vg>V, accordng to equationg2-75)
and(2-79), shear reinforcement must be introduced. The required shear reinforcement
can be calculated as

a |v, 0
Ve =V E- V—Cg For the initial elatic response (2-89)
¢ d -~
— é Vc '8at g . . .
V; = Vi mn - O—2 For the oscillating elastplastic response (2-86)
é‘% 2Vd,min L 9

where minimum value¥y min and Vio, min are obtained by $#ng p/g=1 andL as the
shorter spai for slabs. The shear reinforcement can then be calculated as

___ A
Vi = sing)a ., (2-87)

yk

whered is the angle of shear reinforcement to the flexural reinforcement in tension.
Consequently, no consideration is taken that the shear crack can be vertical.

In case oklastic response the shear reinforcement should be evenly distributed over
the length

A V
x=a, @+ 1- >° (2-89)
(; d =

In case of elastplastic response the shear reinforcement should be evenly distributed
over the length

) 86 G
x=0.250 (8 + \/1- Ve c?ﬁg (2-89)
Q —

<
[ee}e]]

d,min
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where the distance between the aheeinforcement should not be greater than
0 . 7 5 Ad) diL+shoaltl be set as the shorter spdar slabs.

2.5.4.2 American design approach

DoD (2008) defines direct shear as the rapid growth of a vertical crack through the
depth of a concrete member. Diagost&el reinforcement anchored in the support can
prevent this and is required if the

- design support rotations are gredtem?2°
- concrete direct shear capacity is insufficient
- section is in tension.

The direct shear capacity of concrete is considerdxktzero if the rotation is greater
than 2° or if the section is in tension, which can be the case with an indoor explosion.
Diagonal reinforcement is not recommende&d be designed irbeams. Instead,
rotations should be limited and the concrete direeasbapacity sufficient. The direct
shear capacity is not zero for simply supported members even if the support rotation is
greater thar2°. Consequently there is no need for diagonal reinforcement if the direct
shear capacity is adequate. The direct sbapacityfor concretecan be written as for

a slab and beam respectively.

V, =0.16f', bd for slabs (2-90)

V, =0.18f',.bd for beams (2-91)

whereVy is the drect shear capacity of an element with widtand effective depth.
f 46 is the ultimate dynamic compression strength of the concrete, which is 10%
greater than the ultimate compression strength.

f'. =110 (2-92)
If diagonal bars are required, the required area can be expressed as

Vb-Vv,)

A= f Bin(a)

(2-93)

WhereAgis the required shear reinforcement bar avg#s the ultimate shear foe at

the face of the suppoper unit width a is the angle of the bars affis is the dynamic
design stress for the reinforcement, which depends on the maximum support rotation.
How to determine the dynamic design stress for different support rotasons
presented in DoD (2008), with a lower value corresponding to the yield §tréss

small values of the maximum support rotations.

For an unreinforced concrete member loaded in bending the maximum allowable
shear stresy/., can be calculated with egtion(2-94) or (2-95).

Vv, =24t )" (2-94)
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V, =[Lodf, )2 +25000| ¢ 3.5(f, )2 (2-95)

Wherer is the reinforcement ratiof tensile reinforcemeratthe support.

According to DoD (2008), the ultimate shear force at the face of a support is
reasonably estimated for a short duration blast load as a function of the maximum
internal resistance onlyf the ultimate resistance is not reached, the actual elastic
resistance value should be used to obtain the shear forces at the supports. This
corresponds to using the equivalent static loatbducedin Section2.4.2.6 The

values for different support and load conditions are showialohe?2.7.

An interesting observation is that this corresponds to using the equation as in the
Swedish approaglsee equatio2-72), with transformation factors assuming a rigid
body motion, i.e.kn= k£ = 1. Consequently, the contribution from the load is not
taken into account as it is for the Swedish appro@bls. should be on the unsafe side
initially but conservative durinthe plastic oscillation.

Table2.7. The maximum support reaction according to DoD (2008arR r, are
the ultimate internal resistance force and force per unit length.

Edge Conditions and Loadir Support Reactiond/s
diagrams
Left support Right support
l R R
a < 2 2

l 1R, R,
j S 16 16

— R R

Lo R R
e < 2 2
[ — rL r,L
2 2
[ 1 ] L L
—=. : :
7 ]
ﬁ—'—f ruz L ruz L
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The shear force at the supports of a slab isdraaddetermine but expressions can be
found in DoD (2008). It is derived by using the yield line procedure and depends on
which yield line figure that is chosen. The reader is referred to DoD (2008) for more

information.
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3 Reinforced concrete leam subjectad to impulse
load

3.1 Introduction

In order to give a better understanding of the behaviourenérced concrete beam
subjected to an explosioan example is carried outhe beam is modelled in the
finite element program ADINA which is considered to tbespresent the real
behaviour. The result will be compared to the result that can be obtained by simplified
hand calculations and with an equivalent SDOF approach described in Seétbn

The problem will be simplified byrdy considering four material responses, namely;
linear elastic state I, linear elastic state Il, ideal plastic and giesttic. The beam is
modelled in ADINA with beam elements with the different simplified material
behaviours. The example will latee bextended by modelling the real Aamear
behaviour inAppendix I.

3.2 Definition of geometry and loading

A 3 metre high and 400 mm deep reinforced concrete wall in a protective facility or a
building without windows will be analysed. The wall is reinforcedth steel
reinforcement B500Bf 242 0 @Which is placed 40mm from the edge. Since a
dynamically loaded system will be strained in both directions it is important to
reinforce both sides of the member equally. The concrete strength is C30/37. The wall
is subjected to a uniform pressubhat decreases with time. For this case the dectal
archive bomb, introduce ineBtion2.1, has been used as a reference load; i.ek25

of TNT detonated 5 metres away from the wall and assuming spherical spreading,
Johansso and Laine (2007). This will give a peak pressure of 5000 kPa and an
impulse intensity of 2800 NsAnwhich corresponds to load duration of 1ri& when
assuming a triangular load impulse as mentionegeiction2.1. The archie bomb is
referred to as load case 1, also denoted LC1. The wall will be subjected to other load
cases with the same impulse intensity. All load cases and their corresponding values
are presented ifigure 3.1. Further, when nopgcific load case is mentioned load
case 1 is used.
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Ppeak, 0 Load casg PpeakPa] | tp[ms]
LCO 10,000 0.56
LC1 5,000 1.12

Preak 1 LC2 2,500 2.24
LC3 1,250 4.48

Ppeak, 2

I:)peak, 3

tn

v

tQO tD,l tD,Z tD,3

Figure3.1. An illustration of the different load cases and their corresponding values
of peak pressure R and load duration 4 All loads have the same
impulse intensity i.

The wall is not hindered to rotate at the rigid supports, which only support the wall in
one direction. Thus, the wall can be simplified as a simply supported beam element
with a width of 1 metre, sdeigure3.2. The data is summarisedTiable3.1.

RN A '&%‘

3.0m 1.0m

Figure3.2. The dimensions of the beam used in the example.
Table3.1. Summarised data for the example beam.

Data for the example

Length,L 3.0m Impulse intensityj 2800 Ns/m
Depth,h 0.4m Peak pressurd, 5000 kPa
Width, b 1.0m Active time,t, 1.12 ms
Reinforcement f 205200 B500B

Concrete C30/37

Concrete coverc 50 mm
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The beam can be simplified into a singlegree of freedom system by choosing a
system point and then applying an equivalent mass, stiffness and force to it. The
cente point of the beam has been chosen as the system point in this example. The
transformation of a beam into a SD®Y¥stem is done by using transformation factors.
The transformation factors depend on the shape of the beam deflection, which means
that diffelent transformation factors will be used for the different material behaviour.
They are tabulated in Secti¢h4.2.3 The equation of motion can then be solved
analytically or numerically. The central difference method will implemented in
MATLAB for this example, and is presented further in Appendix A.

3.3 Equivalent SDOF system
3.3.1 Mass

The hand calculation uses the work equilibrium method described in S2cti@m

In order to calculate the maximuneftection and the work equilibrium, the stiffness,
equivalent mass and the maximum resistance force must be calculated. The mass can
be calculated to

m=r G QvQA =2400D.4Q.0¢3.0 = 2880kg (3-1)

As shown in Sectior2.4.2.3 the only parameter needed to be transformed into an
equivalent parameter is the mass. It will depend on the deflection shape and hence we
obtain different equivalent masses for the elastic and plastic cases, respechieely. T
amr values are presented in Sectihd.2.3 The equivalent mass for the elastic and the
plastic materials respectively is

m,, = k,.m=0.788¢2880= 2270kg (3-2)

M, = KM= 0.667(2880=1921kg (3-3)

3.3.2 Stiffness
The stiffness for a simply supported beam can be calculated as

K= 384I3EI
SL

Hence, the moment of inertia for state | ahdsito be found. The influence of the
reinforcement in the compression zone in state | and Il can be neglBogetension
reinforcement is considered by transforming the steel area into a corresponding
equivalent concrete area.

(3-4)

E
Aeq= E =ahA, (3-5)

where
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A -%-%—157lmmz (3-6)
E. 200 -
a:—s—§:6.36 ((3-)7)

The effective depth is
d =h- ¢=400- 50=350mm (3-9
Then the moment of inertia for state | can be calculated as

bh? &, hg ah . §9
I, =—+Ala-1 -0+ dio o=
12 '%( )%‘ 29 8% 195

2
4000 + 300 500 u =57140° mm"
g 2% ¢2 iy

In state I, the moment of inertia must be calculated from the crackedsaotssn.
By assuming negligible normal forces, the height of the compressedxzmare be
calculated by area equilibrium

(3-10)

_10008400°
12

2

_ bX2 +aAd 311
bx+aA,
The height of the compressed zone is then obtained
X=74mm (312
The moment of inertia in state Il can then be calculated as
l, = bl +aA(d- x) = 10003("743 +6.36A1571f350- 74) =8.97A0° mmr (313

The stiffness for the cracked and uncracked state can be calculated using
equation(3-4).

.. 5 O A A3
, < 3ABA0 BIA0° 6N (314
5QG m
384(330Q0° @.97Q0* 5 7 N
Ky = i =8.42000" = :
1l 53 m (3 15)

3.3.3 Maximum internal resistance

When the plastic case is considered, there is no stiffness and instead the internal
resistance is explained by the maximum capacity. Asnglification, the plastic
material behaviour is modelled as a straight line, which starts to yield at the maximum
capacity. A comparison is made and the difference is only 2% between the ultimate
moment capacity and moment capaeityen the steel justigids, see equatiaf3-20).
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The ultimatemoment capacity mushereforebe calculated. An explanation is given
in Figure2.5. The compres=sd zonex, can be calculatettom equation(3-16), if is
assumed thahe steel yield andthat the section reaches its ultimate capacity when
the concrete reaches the ultimate compressive strain in the outermogtdiicesar
andbr are stress block factotkat are 0.81 and 0.416 respectively when the section
has reached its ultimate capacity according to Euro2pG&N (2004).

590 4571
f 200
X = y‘;AS = 1'1530 =42mm (3-16)
AgleaW 0.81%6000

The partial coefficients used for steel and novete areequal to 1.15 and 1.5
respediely. An explosion is categoesl as an accidental load and therefore these
partial coefficients should be set to 1.0 for steel and 1.2 for conbietertheless hie

values used in this thesis will not affect themparison. However, it should be
noticed that in design the correct partial coefficients corresponding écadental

load should be used. The moment capacity can then be established by moment
equilibrium around the steel reinforcement.

Mg, =agf. - b&)=

.30 .. . i} (3-17)
=0810< .0420¢0.35- 0.416M.042) = 227kNm

According to Biggs (1964) the maximum internal resistance is defined as

R, = 8'\’L'Rd = 80'237003 = 606KN (3-18)

The moment cagrity when thereinforcement steel statd yield is calculated by
assuming the strain in the tension reinforcement is equal to the yield strain. The
moment at this point can be calculated as

Ecl, . X, ° . .3 5
=T % (G- 1 8=223kNm (3-19)

M
¥“ o2 d-x, ¢ 3=

The ratio between the two moment capacities are stated as

M
¥ =0.98 (3-20)

Rd

The state Il stiffness has been used in the efaatiic model. This will give a
slightly larger ¢astic deformation than in the real case. This is becausdiear
relationship is assumed which will give a longer elastic branclrigees3.3.
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Figure3.3. The difference between the real behaviour and the assurdetedn
elastaplastic behaviour used in the SDOF model.

3.4 Hand calculations

3.4.1 Maximum required deformation

The required deformation for having energy equilibrium assuming linear elastic
behaviour can be calculated as

Uy = (3-21)
mw

The deformations in state | and state Il can be obtained as

2800038
ol = ———=7.9mm (3-22)
J22700.00010
el 280.(.)03.. =19.2mm (3-23
[22708.42A0’

According to equatiof2-17) the plastic deformation can be expressed as

I 2
u, =—=¢ 3-24
P 2mR (329
This will give the required plastic deformation
Y
Uy, = ..(280.(.)@@) = —30.3mm (3-29)
2Q921®05.5Q0
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The total deformation for the elagbtastic case can be calculatedcording to
equation(2-18) as

2
_ 12, R

u — 3-26
*® 2mR 2k (320

The total elastglastic deformation will therefore be

.
u,, =30.300°° + % =339mm (3-27)

Of which the elastic deformation is

-
:B :@ =7.1mm (3-29

Then the plastic part of the deformation can be calculated as

Ugppt = Ugp = Ugper =26.8mm (3-29
In the ideal plastic and the elagitastic cases, the maximum capacity is assumed and
the energy is dissipated with plastic deformation. The failure criterion will therefore

not be the moment capacity. It is rather the rotational capacity of the section that is
important.

3.4.2 Dynamic reactions

The dynamic reactions can be calculated for the instant when maximum deformation
takes place by using an equivalent static load, described in S@dlié6 For the
elastic case it is

Qel = ICW (3'30)

This gives a value for the uncracked case

—
Q. = 2800@("_'!({" (200907 _ 3940k (3-31)
’ 2270

And for the cracked case

—
Q. =280030Q 84290 _ 151 8kn (3-32)
' 2270

The plastic equivalent load is calculated from

Qu =R, =606kN (3-33)
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Rm is calculated according to equati3118). The moment effect on the beam at mid
spancan then be calculated as

Mg, = Q—8L (3-39)

According to Johansson and Laine (2009) the support reaction can be found as

Ved = (3-39

N[O

This gives the dynamic reaction presentedable 3.2. Johansson and Laine (2009)
also mention that higher support reactions can oatcan early stage when the beam
IS subjected to an impulse load.

Tade 3.2. Dynamic reactions at maximum deflection

u[mm] Meq [KNm] Ved[kN]
Elastic state | 7.9 1478 1971
Elastic state Il 19.2 607 809
Plastic 30.3 227 303

An interesting observation is that lessfséfements will deform more but will not
require as much capacity. However, there is an upper limit for how much an element
can deform. For the elastic cases a simple capacity check can be carried out. For the
plastic case the plastic rotation capacity tineslimited.

The Eurocode 2 approach to perform this check is described in s2@i@nFirstly,

the shear slenderness should be checked. This is done by dividing the shear span with
the effective depth of the member. Thear span for a simply supported beam is half

the length.

= 2=—=—_"_=429 (3-36)
d 2d 2®35

The diagram irFigure 3.4 is used for finding the plastic rotation capacity. It is only
valid for a=3. For other values it should be corrected with

Kk, = \/g =1.20 (3-37)
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Figure3.4. Diagram for evaluating the plastic tation capacity according to
Eurocode 2, CEN (2004).

In this example, the ratio between the compressed zone and the effective depth of the
beam is

% = ?:4—520 =0.12 (3-39)

Class B reinforcement is ubethen the plastic rotation capacity can be found as
du=1 2. % vad flom Figure 3.4. It can be observed that the capacity is limited by
the ultimate steel strain. However, it is a good design since the plastic rotation
capacity is high.

The maximum plastic rotation capacity daen be calculated as
Gyq =k g, =1.2002500° =15Q0°° rad (3-39)

The plastic rotation capacity can be related to the plastic displacement for a simply
supported beam as

— LQpI,d - 3(15(10-3

Upig 5 > =225mm (3-40)

which is smaller than the deformation in the elgdastic model. However, in
equation(3-32) it is shown that the plastic deformation needed is 26.8 mm, i.e. larger
than the capaty, which means that the beam will not be able to resist the blast load
and will fail when the deformation reaches 22.5 mm.
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3.5 FE-analysis ADINAT considerations and restrictions

3.5.1 Introduction

For detailed analyses the finite element program ADINA will bedudt is a good

choice when analysing a structurebds dynam
considerations and modelling simplifications must be introduced such as: usage of
equivalent Young's modulus, FE elements, wave propagation, integration schemes,

output and damping.

352 Equi valent Youngds Modul us

The choice of modelling a simplified material in ADINA is by using a linear or bi
linear material response. Hence, this will cause some modelling issues concerning the
correct YoungoOs Moorectpees ofthevalesin theemateraly t h

When the calculation in state Il is performed, ADINA will not recognise that the

section is cracked and will use the moment of inertia of the full uncracked concrete

section. In order to model a cracked sectamd obtain the state Il stiffness, the
Youngo6s modul us wil |l be multiplied with th
state Il and state | from equati(@+10) and(3-13).

i
E, :IiE, :%@3:5.186% (3-41)
I 5.71Q0
ADINA cannot model ideal plastic material behaviour. Instead,-lanéar relation
with a Youngdés modulus multiplied with 100
is used.
E, =100E, =3300GPa (3-42)

It could be argued that the wave speed in the material should be maintained by
changing the moment of i nertia instead of
fictional yield stress and the geometry of the beam and will consequently be a more
complex way of modellingThe modelling can be performed in three ways, shown in

Figure3.5. The first scheme is used above inordertceal at e an effective
modulus. This methtb does not maintain the wave speed in the beam, see
equation(2-19), which will change with the square root of the factor used for the
Youngos Suoleetherd mamtains the wave spby only changing the moment

of inertia I. As a result, the geometry and the fictional yield stress must be changed. If

the height of the beam is increased to more than three times the span length it
becomes a deep beam and ADINA cannot guarantee ae@oiations when using

beam elements with the EuiBernoulli beam theory formulation. Therefore, a third

scheme is introducedvhich maintains the wave speég increasing the density.

Since the mass must be constant this unfortunately also affects dheetge and

fictional yield stress. This is the most complicated scheme and is not preferable since

it does not provide a solution to the deep beam prablem
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Figure3.5. The methds for changing stiffness when a cracked section or an ideal
plastic section is considered.

If the bending stiffnes€&l decreases and schemes 2 or 3 are used, the equivalent
section will become wider and lower. Consequently, the deep beam formulation will
never occur and these schemes are applicable at all times provided that the original
section is not a deep beam. The ideal plastic case is modelled with larger bending
stiffnessEl. This will mean that the depth of the beam increases and problems in the
modelling can occur.

Scheme 1 is preferable to use since it onl
the influence of the wave speed must be investigated. This is carried out by keeping
Elconstant , i . e. changing Youawththesamed ul us a
factor, i.e.

I':;— and (El)'=El (3-43

It is carried out in an elasfalastic case but gives the same results in the elastic and
ideal plasticcases. As can be seenhigure 3.6, the deformation changes when the
wave speed is decreased. The solution with 9 times less elasticity modulus diverges
slightly after having reached the turn point. This corredpdn 3 times lower wave
speed. Considerable change is not noticed until the velocity is wrong with a factor of
five, i.e.E/ 25. If the moment of inertia is increased 100 times, the beam becomes a
deep beam and the deformation diverges a lot; i.e. sachmhination canot be used.

The solution using an equivalent elasticity modulus, thpaghees well with the real
behaviour. It can therefore be justified to use scheme 1 when modelling the state Il
behaviour.
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Figure3.6. The displacement in midpoint for different wave speeds in the beam.

The deformation in the midpoint is very si
speed or higher. Therefore, the model with ideal plastic behaviour is believed to be
reasonably correct. It is not possible to investigate how the wave speed influences an

ideal plastic 3 metres beam since the moment of inertia cannot be increased
considerably before deep beam is obtained. Therefore, Studies of a 15 metres long

beam havalso been carried out. Tlaevalue was 100. The deformation is higher for

the model with higher wave speed while scheme 2 and 3 provide the same result.

The wave speed in the beam is complicated and is researched by ADINA at the
moment. As will be seen in Sectidh5.4 the timestep also influences the wave
propagation and the existing problems with wave propagation should be known.
However, the currently used modelling techniques are sufficiently accurate for this
case and small changes in the waveedmn be neglected.

3.5.3 FE-elements

Beam elements will mainly be used for this thesis. A detailed analysis will be
performed using 2E30lid plane stress elements will also be performed.

All elements in the beam will be modelledelastic plastic or elastplastic. Ek and
Mattsson (2009) modelled the beam with one plastic element in the midpoint. They
obtained a large divergence in their result since the elastic elements oscillated around
the plastic element.

64 CHALMERS, Civil and Environmental Engineering Ma st e 2BZ103 hesi s



ADINA chooses 7 integration pointsrer the heighof the crosssection, regardless of

t he us e rwhen pecfdinarng 8 heam analyses. It has been shown in previous
maste theses (Ek and Mattsson, 2008ugustsson and Harenstam, 2010) that
ADINA will not have the assumed capacity of a 3D beam esestion.The stress are
correct at the integration points but the stress distribution in between is described with
a polynomial which gives another capacity compared to what would be expected. This
is illustrated inFigure3.7.

fya

%ij

fya

fya

fya
Expected stress distributon Stress distribubn using
7 integration points

Figure3.7. The stress distribution over the height using 7 integration points.

However, vhen 2Dbeam elements are usids possible to use 3 integration points
over the height iADINA, which will make thestress vary linearly through the cross
section seeFigure 3.8. In this exampleonly 2D actionis usedwhich means th&2D-

beam elements witB integration pointover the height aresed.A fictional yield

stress can therefore be introduced. The input fictional yield stress is dependent on the
stress distribution and indirectly dependent of the integration polrts. input
fictional yield stress can therefore be calculated to

fya

2
£, =ee it w, =20
W, 6
622700° (549
o == =851MPa
fyd 1@4

Stress distributior

Figure3.8. Stress distribution when using 3 integration points over the height. A
fictional yield stres, {4 can be introduced.

3.5.4 Wave propagation
3.5.4.1 Introduction

Wave speed is of importance when investigating the initial behavioan impulse
loaded structural element. Therefore, the modelling of wave propagation in ADINA
needs to be investigated. Thisdisne for both beam elements and solidél®ments.

It should be mentioned that ADINA always uses the elastic wave regardless of the
structures response, ADINA (2010he investigation has been made vwatiimpulse

with constant amplitude for 1 mseeFigure3.9.
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o=1ms

Figure3.9. Impulse load used for wave propagation studies.

3.5.4.2 Beam elements

The two cases shown iRigure 3.10 were investigated. The support reaction was
investigated and the wave was assumed to arrive when the magnitude reached 0.5% of
the maximum valueAs presented in Sectidh4.1.6 the time until a pressaiwave in

one dimension would arrive at the support should be:

t=L=_15  _040400°s
¢ [33a0° (3-45)
2400

The time until a shear wave would arrive should be:

L_ 15 = 0627010 °%s
C

3300° (3-46)
21+ 0.2) 2400

Large divergence between the theoretical wave speed and the analysis were found.
The first case should correspond very well to a pressure wave and the second case to a
transverse wave. Both cases have approximately the same arrigalttisn0.21 and

0.22 ms respectively. For case one a major shock front seems to arrive approximately
at the theoretical arrival time but some disturbance has arrived before. This could be
due to some numerical errors in the calculation.
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Figure 3.10. Support reaction over time for the two experiments. The blue dotted line
represent the theoretical arrival time for the waves.

The wave speed in the beam model seems to be independenf Poi ssoné6s r a
same result is obtained if no transverse deformation is allowedn #&. This

suggests that the wave speed is calculated as the speed of a pressure wave when using

beam elements regardless of the actual speed. This should not be true for a shear wave

and therefore it may not be appropriate to model the wave propagatioream

elements.

The wave speed depends of the mateoal asgséen inmodul u
Section2.4.1.6 The elastic modulus was therefore varied while the area and bending

stiffness was kept constant, according to schenre Section3.5.2 in order to see

how the arrival time to the support changed. The elastic modulus was increased 25

times, which gives the following input variables.

E'=25E I'=— c'=5¢c 3-4
25 (3-47)

The result is visualised iRigure3.11. According to equation-45) and(3-46) with
parameters from equati@B-47) the arrivaltime should be approximately 0.08 ms for

a pressure wave and 0.125 ms for a shear wave. The theoretical values are represented
with a blue dotted line. Again, it can be seen that the support reaction has some
disturbance before the major front arrives. ®iear wave does not seem to be
modelled appropriately using beam elements.
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Figure311. The reaction force over time for a be
E & 25E.
It was not possible to model a mudbwer elastic modulus since the program
interprets the high moment of inertia as a deep beam section, which does not give
adequate values using EuRernoulli beam theory, compare reasoning in
Section3.5.2 This is a modelhg limitation but will not influence the results in
further analyses since Youngd0s modul us is

always lower.

3.5.4.3 2D-solid elements

The wave speed may not be modelled correctly with linear beam elements and in
orderto get a better understanding, the wave speed was also studied using 2D solid
plain stress elements. It is also interesting to study whether the model distinguishes a
shear wave from a pressure wave. The influence of Poisson's ratio is also studied to
seehow much it influences the wave speed for the two cases.

To study the wave speed the simple cantilever beam of length 1.5m was used, see
Figure3.12a. A load in the form of a pressure load is applied to the tip of the beam.
This load is applied in the axial direction to the beam,Hgare3.12a. To measure

the wave speed the reaction in the horizontal direction of the beam is studied at the
support. For this case the influence of Poisson's ratio issweajl, this can be seen in
Figure3.12b. The wave speed tsigherwhen studied in the FBnalysis compared to

the expected theoretical value. The theoretical wave speed for the pressure wave is

s
c= E 5 = 33.,00 >y =3785m/s (3-48)
r(t- n?) \ 240041- 0.2%)
and the corresponding arrival time is
a = L_15 0.40ms (3-49)
c 3785
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| t can also be observed that the influence
thatthis is presumably a pressure wave.
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Figure3.12. The wave speed when using-2dlid elements. The dot in (a) indicates
in which point the reaction is measured.

When studying the &lar wave the same cantilever beam model is used. The load is
applied as a shear load at the tip of the beam and is distributed along the whole height
of the beam, seEigure3.13a. The reaction in the vertical direction is themdgtd at

the support.

This study shows that that the influence of Poisson's ratio is higher for the shear wave
than a pressure wave, segure3.13b. This is expected due to the influence of
Poisson's ratio when calculating tekear modulus. The fact that the wave speed
obtained in the second analysis is lower strengthens the assumption that it is a shear
wave not a pressure wave. As for the first case the wave speed obtained in the FE
analysis is higher compared with the the¢ice¢ value. The theoretical shear wave
speed is

—
c= G. 3§Q0 =2394m/s (3-50)
r\ 24002(1+0.2)

and the corresponding arrival time is

t,=—=-—""=0629ms (3-51)
C
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Figure3.13. The modelling of a shear wave. Larger difference between the model
with v= 0.2 or v= 0 implies that shear action is of more importance.

3.5.4.4 Influence by choice of time step

The wave propagation problem was investigated in contact with ADINA support
ADINA (2012). ADINA suggested that the initial disturbed region before the wave
front occurs because the critical time has not been used and therefore numerical errors
occur. Accordng to ADINA, using a timestep close to the critical time step is vital in
order to capture the wave properly. It is also suggested that the implicit method should
be carried out with the Bathe Composite Method, which provides better results. The
shear wae propagation is currently a researched subject ADINA (2042) a
straightforward recommendation for the critical time step for a shear wave does not
exist. Reasonably, it would be the element length over the shear wave speed but this
relationship couldhot be found. The critical time step is the time the wave propagates
one element, ADINA (2010) and defined as

(3-52)

WhereL.is the element length and

(3-53)

(3-54)

for beam and 2B0lid elements, respectively, according to ADINA (2010).

The chosen time step affects the wave propagabosiderably Figure 3.14 shows

the support reaction when the critical time step is used. As seen, the agreement
between the theoretical wave front (blue dotted line) and the wave front in ADINA is

good. The previous found numeticarrors before the wave front are decreased
considerably. However, it does not seem like the shear wave can be well explained by
beam el ements and this is further supporte
affect the answer.
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