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Structural Response of Reinforced Concrete Beams Subjected to Explosions 

Time dependent transformation factors, support reactions and distribution of section 

forces 

Master of Science Thesis in the Masterôs Programme Structural Engineering and 

Building Performance Design  

SEBASTIAN ANDERSSON 

HAMPUS KARLSSON 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Concrete Structures 

Chalmers University of Technology 

ABSTRACT 

A shock wave in air resulting from an explosion is a highly impulsive load. A 

structural element subjected to an impulse load will behave differently than when 

subjected to a static load. This Master's thesis uses finite element analyses and 

simplified single degree of freedom systems to describe the structural response for a 

simply supported reinforced concrete beam subjected to an impulse load.  

Theory about design of reinforced concrete members and how the member can be 

described with a single degree of freedom system, denoted SDOF system, are 

presented. Further, the magnitude and distribution of section forces are investigated 

for an impulse loaded reinforced concrete beam and how well these can be described 

different methods. Special attention is given to the phenomenon dynamic direct shear 

failure and how this is considered in Swedish and American design codes.  

The transformation factors used to transform a structural member into an SDOF 

system come from an assumed deformation shape. The deformation shape is initially 

governed by wave propagation and the theoretical transformation factors do not 

describe the response fully adequate. Therefore, the concept of time dependent 

transformation factors is introduced. This concept, require an energy preservation 

method that is presented in this thesis, and makes the deformations in the SDOF 

approach and the finite element agree very well. 

The use of an equivalent static load is shown to provide section forces on the unsafe 

side. It is also shown that their distribution cannot be adequately described with an 

equivalent static load.  

The initial value of the support reaction may obtain a high magnitude when the 

structural member is subjected to a highly impulsive impulse load. This is treated in 

the literature in different ways. The current Swedish approach overestimates the 

support reaction considerably and the best approach is to use obtained time dependent 

transformation factors and a varying stiffness. Nevertheless, a more general approach 

on how to describe this is needed to describe the exact peak value and the time of its 

appearance. The SDOF model for design against direct shear is vague and further 

study is needed in order to treat this problem. 

Key words:   Explosion, impulse load, SDOF, direct shear, finite element analysis, 

concrete, dynamic response, time dependent transformation factors, support reaction
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Strukturell respons för armerade betongbalkar utsatta för explosioner 

Tidsberoende transformationsfaktorer, reaktionskrafter och fördelning av 

sektionskrafter  

Examensarbete inom mastersprogrammet Structural Engineering and Building 

Performance Design  

SEBASTIAN ANDERSSON 

HAMPUS KARLSSON 

Institutionen för bygg- och miljöteknik 

Avdelning för konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

SAMMANFATTNING 

En stötvåg i luft från en explosion är en impulsiv last. En konstruktion som är utsatt 

för en impulsiv last kommer bete sig annorlunda jämfört med en statisk last. Det här 

examensarbetet behandlar fritt upplagda armerade betongbalkar som är utsatta för en 

impulsiv last. Detta görs genom FE analys och förenklade enfrihetsgradsmetoder. 

Teori om hur armerade betongbalkar dimensioneras och hur de kan bli förenklade till 

enfrihetsgradssystem presenteras. Vidare undersöks storlek och fördelning på 

sektionskrafter och hur väl dessa kan bli förklarade med förenklade metoder. Speciellt 

fokus är lagt på fenomenet dynamic direct shear failure och hur detta dimensioneras 

för i svensk och amerikansk designkod.  

Transformationsfaktorer som används för att göra om ett konstruktionselement till ett 

enfrihetsgradssystem kommer från en antagen utböjningsform. I ett tidigt skede beror 

utböjningsformen på vågutbredning vilket gör att de teoretiska värdena på 

transformationsfaktorerna inte är tillräckligt korrekta. Därför har tidsberoende 

transformationsfaktorer introducerats. Energin måste dock bevaras och ett 

tillvägagångssätt är presenterat i rapporten. Metoden som använts gör att 

deformationen i FE analysen och enfrihetsgradssystemet överensstämmer väldigt väl. 

En statisk ekvivalent last undervärderar sektionskrafter nämnvärt. Även den 

tillhörande fördelningen kan inte beskrivas med en statisk ekvivalent last. 

Stödreaktionen är väldigt hög initialt. Det beaktas av olika dimensioneringsregler på 

olika sätt. Dagens svenska metod övervärderar stödreaktionen och den bästa metoden 

är att använda tidsberoende transformationsfaktorer och en varierande styvhet. En mer 

exakt metod för att bestämma storleken och tidpunkten för den initiala toppen måste 

dock hittas.  

Enfrihetsgradssystem för direct shear failure behöver utredas mer för att kunna 

tillämpas. De undersökta balkarna hade gått sönder i böjning om direct shear failure 

inträffar i ett tidigt skede. 

Nyckelord: Explosion, impulsiv last, enfrihetsgradssystem, direct shear, finit element 

analys, armerad betong, dynamisk, tidsberoende transformationsfaktorer, 

stödreaktion 
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1 Introduction  

1.1 Background 

An explosion occurs when there is a sudden expansion of matter. This rapid 

expansion creates a shock wave that in turn results in an impulse load acting on the 

surroundings. Explosions can either be intentional or accidental; an act of war or 

terror versus an industrial or traffic accident for example. The consequences of such 

an event can be devastating to nearby structures and people. As they are spontaneous 

events and difficult to predict it is important to build defence structures and to adapt 

the design of potentially targeted buildings so that they can withstand this type of 

extreme loading. Explosions have recently struck Nordic capital cities, Oslo in July 

2011 and Stockholm in December 2010. 

Explosion shock waves are highly impulsive and dynamic loads. They are intense and 

occur over a very short period of time, typically a few milliseconds. The response of a 

structure to a dynamic load varies considerably to that of a static load. The dynamic 

response is more difficult to explain and therefore simplified approaches are often 

used in order to explain the behaviour of the structure. A well established method is to 

transform the structural element into an equivalent single degree of freedom system, 

often referred to as an SDOF system, by choosing a system point in the structure. 

Transformation factors are used to relate the elementôs mass, resistance, damping and 

external force to the corresponding equivalent parameters in the simplified SDOF 

system. Subsequently, the maximum moments and shear forces acting on the structure 

can be found.  

The material behaviour will significantly influence the resistance of a structure. 

Reinforced concrete has been proven to perform well when subjected to explosions 

due to its high mass and ductile behaviour, which dissipates a large amount of energy. 

However, it has a complex stress-strain relationship since the concrete cracks and the 

steel reinforcement yields. Therefore, the relationship is often idealised to linear 

elastic, ideal plastic and elasto-plastic relationships. The same idealisations can be 

used for other materials but this thesis will largely focus on reinforced concrete 

members. 

This work is a continuation of three previous Masterôs theses. Nyström (2006), Ek and 

Mattsson (2009), and Augustsson and Härenstam (2010) dealt with the response of 

reinforced concrete beams and slabs to an explosion by using simplified approaches, 

where the main focus was bending response. The results from the simplified design 

approach were compared to more detailed finite element methods where it was 

concluded that the equivalent SDOF approach using transformation factors could be 

somewhat misleading. This was especially the case for plastic and elasto-plastic 

analyses. More investigations will therefore be carried out in order to explain the 

influence of transformation factors and how the member can be designed for moment 

and shear force.  

Moment and shear force distributions in an impulse loaded structure differ 

significantly compared to the expected static distributions. A phenomenon that has 

been observed in some reinforced concrete structures subjected to impulse loads is 

called direct shear. Short after detonation, often within the first millisecond, large 

shear forces will occur close to the supports, which will cause an almost vertical crack 

propagating through the member. This does not occur when the same structure is 

subjected to a static load. Knowledge about dynamic direct shear failure is limited. 
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The Swedish Fortifications Agency (in Swedish; Fortifikationsverket) has recently 

given out a handbook, which treats direct shear failure briefly and MSB, 

(Myndigheten för samhällsskydd och beredskap), Swedish Civil Contingencies 

Agency, requests to know more about it in order to take it into account in design if 

needed. 

 

1.2 Aim 

The aim of this Masterôs thesis is to complement the analyses carried out in previous 

Masterôs theses and provide a more comprehensive understanding about design 

considerations for structures subjected to explosions. The report considers two main 

areas: 

1) The moment and shear force caused by an impulse load was studied in detail 

for reinforced concrete beams. The thesis also investigates and presents how 

the shear force can be determined and designed for. Additional attention was 

given to the phenomenon of direct shear failure and how it can be taken into 

account in design with regard to explosions. 

 

2) Transformation factors have been proven to be somewhat misleading 

according to Ek and Mattsson (2009) and Augustsson and Härenstam (2010). 

This thesis presents how these differ from more detailed finite element 

analyses and how can it be taken into account in a simplified design approach. 

 

1.3 Method 

A literature review of previous work in the area of interest was carried out in order to 

understand and generally describe explosions, impulse loading and design 

methodology. The literature review was extended to include how shear force and the 

direct shear phenomenon behave and how they are taken into account today in 

Swedish and American design code. The American design approach against 

explosions is chosen as a reference since it is one of the most comprehensive methods. 

Investigations were carried out by performing detailed analyses in the commercial 

finite element software ADINA, which is suitable for dynamic analyses. These 

analyses are the reference for simplified methods and are assumed to represent the 

real behaviour of a structure subjected to an explosion. It is important to realise the 

softwareôs limitations and restrictions. The result of the finite element analyses was 

therefore critically been evaluated by questioning the procedure and the modelling 

assumptions made in the analyses. Several analyses with different input data were 

performed in order to obtain a reliable result, which is more general to any explosion 

situation. 

The simplified approaches were used with three material idealisations including, 

linear elastic, ideal plastic and elasto-plastic. The first two are used in order to 

describe the more complicated elasto-plastic material description, which is the most 

realistic material response despite overlooking strain hardening. 
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In this study an SDOF approach with different material responses was compared with 

their assumed real behaviour. It was also updated in order to correlate better by 

investigating the transformation factors. The design moment and shear force on the 

structure according to design codes are compared to the real loads and the rightness is 

evaluated. The issues of time dependent transformation factors were also addressed to 

consider possible effects of the loads on the structure. 

 

1.4 Limitations  

The analyses only treat reinforced concrete beams. It is most common to use concrete 

when designing structures against explosions due to the great mass and the possibility 

of ductile behaviour that consume a lot of energy. However, much of the basic 

equations are applicable to other materials as well. The reinforced concrete stress-

strain relationship will be simplified to a linear elastic response, plastic response and 

elasto-plastic response to reduce the calculation efforts when investigating the shear 

force. This is a relatively good approximation. 

The studies are limited to a simply supported beam. However, some variation of 

cross-section, length and loading will be done to validate the behaviour. No analyses 

will be carried out on slabs but some theory about their behaviour is presented. 

A more detailed analysis of reinforced concrete beams was intended to be used to 

compare with the simplified method by taking both concrete cracking and 

reinforcement yielding into account. However, the detailed model was not completed 

and is therefore only documented in Appendix I in order to not take focus from other 

investigations.  

This thesis will investigate the primary effects of impulse loads induced by shock 

waves in air from an explosion. It will focus on the early behaviour of the structure by 

investigating moment, shear force and displacement. The influence of ground shock 

waves and bomb fragments will be neglected, as will secondary effects such as the 

load from collapsing structures.  

The thesis will not consider the material effect of high strain rates, which act to 

enhance the performance of the structure. By neglecting the positive effects of an 

increasing strain rate the worst case scenario will be studied. It is discussed in the 

American design code and is therefore further described in the Section 2.4.1.5. 

 

1.5 Outline of the report 

Chapter 2 is a theory chapter that covers basic explosion theory, reinforced concrete 

behaviour and design approaches. In addition, dynamic systems are described and the 

transformation from a real structure into an equivalent single degree of freedom 

system is presented.  

Chapter 3 will describe a cross section and some load cases that will be used for 

further studies. Hand calculations will be shown for the example and parameters that 

will be used in further studies are calculated. It will also cover some consideration that 

needs to be taken into account when using finite element modelling of the problem. 
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Chapter 4 is the first result part in this thesis. Here deformation of the structure is 

discussed and this leads to an introduction of time dependent transformation factors 

for the equivalent SDOF system.  

Chapter 5 compares the section forces obtained by the equivalent static load and 

compares these with finite element solutions. The magnitude and distribution are 

discussed. 

Chapter 6 investigates the support reaction, which must be found if direct shear failure 

can be described adequately. Several methods are compared in order to see which is 

the most preferable in design. 

Chapter 7 evaluates the simplified single degree of freedom system for direct shear. 

This is done by constructing iso-damage curves to be able to see whether a bending 

failure or a direct shear failure will occur. 

The different results are discussed individually in every chapter and then followed by 

a more general discussion and conclusion. The Appendix will give a more 

comprehensive picture of the investigations performed in here. In Appendix I, a 

detailed analysis where a solid 2D model taking concrete cracking and reinforcement 

yielding into account is presented. This model had convergence problems when 

subjected to an impulse load and is presented in Appendix I in order to not take focus 

from other investigations.  
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2 Theory 

2.1 Explosions 

An explosion occurs when there is a need of energy release. Energy is released when 

an amount of matter with a certain volume suddenly expands. This sudden release of 

energy manifests in the form of light, sound, temperature and pressure, all of which 

we recognise as an explosion. The pressure will create a shock wave, which will 

spread outwards spherically from the point of energy release, see Figure 2.1. As the 

shock wave advances away from its origin the pressure will decrease rapidly and 

return to the standard atmospheric pressure. The speed of this process is supersonic, 

ending after a few milliseconds. 

 
Explosion centre 

Pressure decreases further 

away from the centre 

 
 

Figure 2.1. An illustration of how the energy propagates outwards from the source 

of the explosion. 

A shock wave can be described through a pressure curve in relation to time. After 

some time, the arrival time, the shock wave front will reach the area of interest and 

subject it to a positive pressure. Because the shockwave forces the air to move as it 

spreads outward from the explosion centre it will create a lack of air behind, causing a 

partial vacuum or negative pressure phase. A principal pressure-time curve of an 

idealised shock wave is illustrated in Figure 2.2. The positive pressure phase is of a 

higher magnitude and has a shorter duration than the negative phase. However, a 

shock wave is according to Johansson and Laine (2007), often simplified by assuming 

a linear decrease of pressure and by neglecting the negative phase due to its relatively 

low amplitude, see Figure 2.3. In order to avoid convergence problems when 

modelling, a very steep inclination is given to the pressure line between arrival time 

and peak pressure.  
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Figure 2.2. An idealised shock wave from an explosion. The high amplitude positive 

phase is followed by a longer negative phase with lower amplitude. 
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Figure 2.3. A simplified shockwave assumes linearly decreasing pressure and 

neglects the negative phase. 

An idealised shock wave progresses through air without being disturbed. However, in 

a real environment the magnitude and spreading of the shock wave will be affected by 

many phenomena. When a shock wave reaches a stiffer object the wave is reflected 

against its surface. This reflection causes some major changes in the properties of the 

shock wave and can result in an increase of pressure up to twenty times larger than 

that of the original wave, see Johansson and Laine (2007).  

There are two main types of reflection: regular reflection and mach reflection. Regular 

reflection is further divided into normal reflection and skewed reflection. Normal 

reflection happens when the incoming wave approaches the surface perpendicularly as 

shown in Figure 2.4. Mach reflection is a special case of skewed reflection and 

happens when the angle between the incoming wave and the reflecting surface is 
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around 40
o
, see Figure 2.4. It is characterised by a part of the shock wave reflecting 

regularly with another part just sliding along the surface.  

 

 

Mach reflection 

Normal reflection 

Reflection surface 

å40ę 

Skewed reflection 

90ę  

 

Figure 2.4.  A shock wave is reflected at a surface. Two special cases of reflection 

are normal reflection and Mach reflection. 

Diffraction is another phenomenon that affects the wavesô magnitude and duration, 

describing how the shock wave spreads behind and past a building or an object. This 

is a very complex proceeding and depends on the geometry of the structure. 

Nevertheless, effects of reflections and diffractions are taken into account by applying 

a larger load. Specific consideration of how a wave is reflected will not be taken. For 

more detailed information regarding reflections and diffractions, the reader is referred 

to Johansson and Laine (2007). 

There are empirical expressions for the values of peak pressure and duration from a 

certain explosion at scaled distances, Johansson and Laine (2007). The Swedish Civil 

Contingencies Agency, MSB (2011), has defined a load that a protective facility 

should be able to resist. This is in Johansson and Laine (2007) referred to as an 

archive bomb. The archive bomb consists of 125 kg of high explosive TNT exploding 

in air at a distance of 5 metres from the structure.  

 

2.2 Structural response of reinforced concrete subjected to 

static load 

2.2.1 Beams 

2.2.1.1 Introduction  

Engström (2011a) defines a beam as a linear structural member predominantly loaded 

in flexure. According to Eurocode 2, CEN (2004), the structural member is a beam if 

the span to depth ratio is greater than 3 and the width is less than 5 times the depth of 

the member. The load is transferred to the supports in one direction. There are two 

main design issues that need to be addressed: moment and shear. These are described 

in the following sections. 
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2.2.1.2 Moment 

There are three models to explain the behaviour of concrete beams in Eurocode 2, 

CEN (2004). They are called state I, state II and state III and can be seen in 

Figure 2.5. 
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Figure 2.5. The different states of a concrete section and internal forces. 

State I is when the concrete is not cracked and the behaviour is assumed to be linear 

elastic. It is often reasonable to neglect the influence of reinforcement in this state. 

Thus, the crack resisting moment of the cross-section can be easily determined with 

help of the moment of inertia I, the location of the neutral axis and concrete tensile 

strength.  

Concrete is weak in tension and will crack early. A state II model is often used when a 

cracked concrete beam is studied for low loads. This model assumes linear elastic 

behaviour both for concrete and reinforcement but neglects the influence of cracked 

zones. It is an adequate assumption for the reinforcing steel and for concrete at 

stresses below the steel yield stress. The reinforcement can be converted into an 

equivalent concrete area. Thereafter a moment of inertia for state II can be calculated 

and consequently the moment capacity. 

When the steel begins to yield and the concrete has a non-linear compression strength 

a state III model is used. It takes both concrete cracking and steel reinforcement 

yielding into account. The moment capacity is determined by using moment 

equilibrium. The ultimate capacity can be calculated by assuming reinforcement 
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yielding and ultimate compressive strain in concrete in most outer fibre. Concrete 

stress block factors aR and ɓR are used to approximate the non-linear distribution in 

the concrete with a stress block with a lever arm to the neutral axis. If the steel in a 

state III model has not begun to yield, the concrete will suddenly fail in compression. 

This is brittle failure mode and should be avoided if possible. 

These three different states can be demonstrated in a moment-curvature relationship 

for a continuous concrete beam. A moment curvature relationship can also be 

described with a force displacement relationship where the force is the external force. 

A typical moment-curvature relationship for a small reinforced concrete region can be 

seen in Figure 2.6a. This moment-curvature relationship can be modified due to time 

dependent deformation and creep but will not be considered in this thesis. An 

additional axial force will change this relationship and a specific case for each axial 

force must be obtained.  

The moment-curvature relationship can be simplified from a multi-linear to a bi-linear 

relationship where the slope of the curve is an approximation of the flexural stiffness 

at the different stages. This bi-linear relationship is illustrated in Figure 2.6b. It is 

sufficient to use this simplification if the purpose is to calculate the need for plastic 

rotation according to Engström (2011a). In order to determine the yield bending 

moment and its corresponding curvature at the breakpoint, a state II section analysis 

should be carried out assuming tension reinforcement strain has just reached the yield 

strain. For more detailed description how to do such an analysis the reader is referred 

to Engström (2011a). 
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Figure 2.6. A moment curvature diagram (a) and the corresponding simplified 

moment curvature diagram (b). 

When a section in a reinforced concrete beam cracks, it will suddenly lose stiffness 

and the remaining stiffness will depend on the provided reinforcement. The parts that 

are uncracked will be stiffer and moment redistribution will take place as they attract 

more moment. When the concrete cracks it is often assumed that the cracked part of 

the section cannot take any stress. However, the uncracked concrete between flexural 

cracks will carry some stress with help of the bond between the reinforcement and the 

concrete. This contribution is large just when the concrete cracks but declines as more 
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sections crack. This is referred to as the tension stiffening effect and can be seen in 

Figure 2.7. In further investigations, this thesis does not consider tension stiffening. 

 

With tension 

stiffening 

Without  tension 

stiffening 

State I 

òuncrackedò 

State II òfully crackedò 

r

1  

M 

Mcr - 

 

Figure 2.7. Response of a region with regard to ótension stiffeningô in a concrete 

member subjected to pure bending. Based on linear stress-strain 

relationship for both concrete and steel. 

After a while cracking will exist all along the length of the concrete beam and the 

stiffness of each section is merely dependent on the amount of reinforcement. The 

stiffness distribution in the cracked state may be different from that in the uncracked 

state due to uneven reinforcement arrangement within the beam. Loading the beam 

even further will result in reinforcement yielding. The yielding will start in the highest 

stressed section and in this section the steel deforms more than in adjacent sections 

where the steel still have an elastic response. This will create a region with 

concentrated plastic rotation, a so called plastic hinge.  

 

2.2.1.3 Shear 

A load on a concrete structure will in addition to moment give rise to shear stresses 

over the span. The flexural stress and the shear stress can be combined by using 

principal stresses. The concrete will crack if the principal stress exceeds the concreteôs 

tensile strength at any point in the beam. Failure due to shear forces is often brittle and 

happens suddenly. 

For a beam loaded in pure shear this means that the principal stresses will be 45
o
 to 

the longitudinal axis, see Figure 2.8. Eventually, the tension principal stresses exceed 

the tensile strength and a crack will occur. The crack will propagate in the direction of 

the maximum principal stress, i.e. 45
o
 to the longitudinal axis. The crack can either 

start as a flexural crack in the outermost fibre and then develop as a shear crack 

through the depth of concrete, Figure 2.9a, or proceed as a web shear crack in the 

centre of the depth Figure 2.9b.  
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Figure 2.8. Principal stresses due to pure shear. 

 

                (a)                    (b) 

 

Figure 2.9. Different shear cracks: (a) Flexural shear crack and (b) Web shear   

crack. 

A strut-and-tie model can be used to explain the behaviour in shear and is illustrated 

in Figure 2.10. The remaining uncracked concrete compression zone can be 

interpreted as a compression chord, the concrete between the cracks as a compression 

strut and the tensile reinforcement as a tension tie. A shear failure is characterised by 

either slip along the crack or crushing of the compression strut. The resistance against 

compression of a concrete compression strut can be obtained by equilibrium 

equations. 
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      (a)       (b) 
 

Figure 2.10. Strut-and-tie model for shear cracks. 

There are four main mechanisms that resist shear failure along a cracked section in a 

flexure reinforced concrete beam, see Figure 2.11. 

1. The crack is not smooth and will therefore have some friction during slip.  

2. Ballast can be trapped in the crack and create mechanical interlocking. 

3. The remaining uncracked concrete compression zone will resist slip along the 

crack.  
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4. Dowel action of the tension reinforcement acts as a significant resistance 

mechanism for large deformations.  

 

(a)             (b)      (c) 

 

Figure 2.11. Mechanisms for crack resistance (a): friction in crack (b), mechanical 

interlocking (b), uncracked compression zone and dowel action of 

tensile reinforcement (c) . 

However, these mechanisms are often not sufficient to rely on when designing against 

shear failure. Firstly, the capacity against concrete crushing and slippage along the 

crack needs to be considered. Shear reinforcement should be introduced if the 

capacity is too low to take tension forces across the cracks. The shear reinforcement 

also ties the main reinforcement bars together and confines the concrete. The designer 

can, within some limitations, decide in which angle the final shear crack will form at 

by designing the shear reinforcement in static load cases.  

Shear reinforcement are commonly made up of stirrups or links perpendicular to the 

axis of the beam, shown in Figure 2.12a, but can also be at an angle. By using inclined 

reinforcement as shown in Figure 2.12b, more shear reinforcement may cross the 

crack, which means that a higher resistance will be obtained. However, the installation 

is more complex and can be more expensive than using more reinforcement. The 

direction of shear forces will alternate in a dynamically loaded system meaning that 

shear reinforcement must be provided in both directions. Lacing, shown in 

Figure 2.12c, can be used for this purpose and provides large rotational capacity 

according to DoD (2008).  

 

(a)             (b)              (c) 

 

Figure 2.12. Different shear reinforcement: (a) stirrups, (b) inclined reinforcement 

and (c) lacing. 
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2.2.2 Slabs 

2.2.2.1 Introduction  

It was initially intended to extend the analyses in this thesis to include slabs. Due to 

this projects time limitation though, it was not possible to analyse slabs further. 

Although the theory presented below will not be further used it shows how a slab can 

be designed and can therefore be of interest.  

A slab is a structural element, often concrete material, which has significantly greater 

width than height, Engström (2011b). The main difference compared to a beam 

element is that transverse action will also have to be considered due to the great 

width.  

A slab can carry the load in one or two directions, often supported by continuous 

walls or beams. A one-way slab can be seen as a wide beam and designed accordingly 

per unit width. However, a two way slab carries the load in two directions and will 

therefore require 3-D analysis in order to obtain proper reaction forces and 

deformations. In this report, slab will refer to a two way slab.  
 

 

Figure 2.13. One-way and two-way slabs. The dotted lines show that the edges are      

simply supported. 

A slab is normally statically indeterminate, which means that the choice of material 

model will influence the result. The material behaviour is the same as for the 

described beam behaviour in Section 2.2.1.2 but stresses will exist in 3 directions. The 

reinforced concrete slab will go from uncracked to cracked, to reinforcement yielding 

and further up to failure as the load is increased. The non-linear behaviour allows the 

designer to decide the behaviour of reinforced concrete by arranging the 

reinforcement accordingly. The reinforcement configuration will change the stiffness 

and the corresponding reactions throughout the sections. 

Since reinforced concrete slabs are rather complex to analyse, models are often 

simplified. There are three methods for designing reinforced concrete in the ultimate 

limit state. The most detailed is a non-linear finite element method with the real 

behaviour. It requires a finite element solution that explicitly models the 

reinforcement yielding and the concrete cracking. The other alternatives are strip and 

yield line method. These assume ideal plastic behaviour and since there is no 

relationship between moment and curvature in the plastic state, the collapse load 

cannot be solved directly. It has to be approached from either upper bound or lower 

bound solutions.  
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2.2.2.2 Strip method 

The strip method is a static method providing lower bound results when analysing 

plastic reinforced concrete slabs (Engström, 2011b). The general idea is to assume a 

moment distribution in the slab in the ultimate limit state and then calculate a 

corresponding maximum load.  

The moment distribution must be in equilibrium in the ultimate limit state. The slab is 

divided into strips in both main directions. The load should be carried by the strips 

together. Any load distribution is allowed as long as the load that is carried by the 

strips together is the same as the actual load on a considered element lying on both 

strips. The slab can be divided into different strip patterns and load distributions, see 

Figure 2.14, which will give different accuracy of the predicted failure load. The more 

the division of the slab looks like the final mechanism, the better the lower bound 

solution will converge with the actual load and the better the behaviour up to failure 

can be estimated. The obtained failure load is however, always underestimated. 

Moments in the main directions are easily obtained on the safe side.  
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Figure 2.14. (a) The easiest and the least accurate strip division. (b) Load division 

with more accurate results. (c) Strip division following the natural load 

dividing lines, which gives the most accurate solution, based on 

Engström (2011b). 

The designer has a great influence when designing a slab. Wrong assumptions of how 

the slab will act will lead to ineffective use and unnecessarily high amount of 

reinforcement. The designer can also decide how the force is resisted at the supports. 

General rules and guidelines for how to choose strips or load division for different 

support conditions can be found in Engström (2011b). It is also explained how 

unrealistic and extreme solutions can be avoided. 
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2.2.2.3 Yield line method 

A yield line is a line with plastic hinges where the deformation has reached the yield 

strain and the moment capacity cannot be further increased. It starts at the most 

stressed point and will, as in theory of plastic hinges, eventually form a mechanism 

and the slab will fail. The yield line method is an upper bound approach and will 

therefore always provide an answer on the unsafe side since the slab will fail in the 

failure mechanism that requires least energy. As a result, it might be a lengthy process 

to find the worst failure mechanism. The development of a potential failure 

mechanism is shown in Figure 2.15 for a slab simply supported on four edges. This 

might not be the most dangerous collapse mechanism. However, the yield line method 

is a very effective approach when analysing existing slabs, where a simple crack 

pattern can be used and a collapse load higher than the actual collapse load will be 

obtained. 

 

(a) (b) (c) 
 

Figure 2.15. Yield line development. The most stressed point starts to yield and the 

yield line will develop until a mechanism is formed 

When the slab deflects, the parts defined by a yield line must fit together. This is a 

kinematic requirement which needs to be fulfilled for all collapse mechanisms. The 

kinematic requirement can be ensured if a yield line or its extension passes through 

the intersection of the adjacent partôs rotational axes. From Figure 2.16 it is clear that 

the yield line between parts 1 and 2 passes through the intersection of rotation axes 

AB and AC. However, the yield line between part 2 and 3 does not intersect the 

intersection between rotation axes AC and BD because the axis never intersect. To 

overcome this, the rotational axes AC and BD are extended to infinity which creates 

and illusion that they intersect. The centre yield line between parts 2 and 3 will 

approach the imaginary intersection and therefore the kinematic requirement can be 

seen as fulfilled.  
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Figure 2.16. The kinematic requirement must be fulfilled for the mechanism to form. 

 

  



CHALMERS, Civil and Environmental Engineering, Masterôs Thesis 2012:103 
17 

2.2.2.4 Shear 

Shear forces in slabs can be resisted in the same manner as for beams in B-zones, 

which are zones where plane sections remain plane under loading,  

Al -Emrani et al. (2008). A strip model can be used to calculate the shear resistance 

and placement of shear reinforcement. Shear failure of a slab supported on continuous 

walls subjected to uniform loading is generally not the governing failure mode since 

the shear force per unit length is relatively small. However, close to concentrated 

forces or supports, i.e. discontinuity regions, great shear forces can occur. A flat slab 

supported on columns for instance. Flat slabs or point load action will not be 

considered in this thesis. Since the shear force occurs in two directions for slabs it is 

rather complex and will not be treated further in this thesis. 

 

2.2.3 Plastic rotation capacity 

Reinforced concrete members have a limited plastic rotation capacity. Therefore, the 

predicted failure mechanism may not occur if sufficient rotation at a plastic hinge 

cannot develop and the member may consequently fail before the full mechanism is 

developed. Experiments of plastic rotation capacity may show low accuracy with 

theoretical models (Johansson and Laine, 2009). Several methods exist for calculating 

the rotational capacity, giving varying results. One potential source of the difference 

in results is that steel properties have changed significantly over the last decades, 

Johansson (1997). The method used in Eurocode 2 can be used to estimate a 

conservative value of the maximum allowed rotation. The method uses a diagram 

taking concrete strength, reinforcement class and the ratio between the compressed 

zone and the effective depth into account, see Figure 2.17. 

 

x / d 

qpl  [10 -3 rad] 

 

Figure 2.17. Diagram for evaluating the plastic rotation capacity according to 

Eurocode 2, CEN (2004). 

For low values of the ratio between compressed zone height and the effective depth 

the limitation will be governed by the ultimate steel strain. Concrete crushing strain 

will govern the limitation for higher ratios. For higher values of the ratio than shown 

in the diagram, a sudden abrupt failure will occur.  
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2.3 Simplified material behaviour 

2.3.1 Introduction  

As realised in Section 2.2, reinforced concrete is a complex material. Therefore it can 

be preferable to simplify the behaviour. Three simplified models are used in this 

thesis to describe the behaviour of reinforced concrete: linear elastic, plastic and 

elasto-plastic. The response of these models often gives a reasonably accurate result 

but is seen as potential sources of error in previous Masterôs theses, Augustsson and 

Härenstam (2010), Nyström (2006) and Ek and Mattsson (2009). This thesis intended 

to in addition to analyses with simplified material behaviour also model the materialôs 

non-linear behaviour, explicitly taking reinforcement yielding and cracking of 

concrete into account. This model was never completed but is documented in 

Appendix I. 

 

2.3.2 Linear elastic 

The simplest way to model the material behaviour is to model it as a linear elastic 

material. By doing so, no permanent deformations will remain after unloading and the 

stress strain relationship will be linear as shown in Figure 2.18. From Hookeôs law, a 

force-displacement relationship can be determined as  

ukR Ö=  (2-1) 

where the internal resistance force is denoted R, the stiffness k and the displacement 

u. The stiffness can be found for any structure by relating the deformation to the load 

instead of moment to curvature.  

 

u 

k 

R 

1 

 

Figure 2.18. Linear elastic force-displacement relationship. 

 

2.3.3 Ideal plastic 

When modelling the material with ideal plastic behaviour, the deformations are zero if 

the stress in the material is kept below the yield stress. It also means that the material 

cannot take higher stresses than the yield stress. As soon as the yield stress is reached 

it will start to deform, where the limit of this deformation is in theory infinitely large. 

However, the deformation is in practice limited by the plastic rotation capacity. The 

ideal plastic force-displacement relationship is illustrated in Figure 2.19. Rm is the 

internal resistance force corresponding to the yield stress.  
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Figure 2.19. Ideal plastic force-displacement relationship. 

The relationship can be described with equation (2-2) where F denotes the external 

force and u the displacement. 
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2.3.4 Elasto-plastic 

The simplified elasto-plastic material behaviour is constructed by combining the 

simplified elastic and ideal plastic material responses described in Section 2.3.2 and 

Section 2.3.3 respectively. Thus, a force-displacement relationship can be obtained, 

see Figure 2.20a. Initially, as the load increases the material response has elastic 

behaviour until the material reaches the yield limit. The elastic deformation is 

completely reversible. When the limit is reached, the material cannot take more stress 

and permanently deforms. Therefore, it can be modelled with the ideal plastic 

behaviour. If the structure is unloaded when permanent deformations has developed, 

the unloading curve will be parallel to the elastic curve and when it is loaded again the 

plastic deformations will take place where it last ended, see Figure 2.20b. 
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Figure 2.20. Elasto-plastic (a) force-displacement relationship (b) response while 

loading, unloading and reloading. 
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The elasto-plastic relationship can be written as  
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2.4 Impulse loaded systems 

2.4.1 Definitions of dynamic parameters 

2.4.1.1 Force 

According to Newtonôs second law, force F is defined as the product of mass m and 

acceleration a.  

maF=  (2-4) 

The force is defined as positive in the direction the acceleration is taking place. It can 

also be recognised that if the mass is increased, the acceleration response due to a 

force F will decrease. 

 

2.4.1.2 Pressure 

Pressure P is defined as a force F acting on an area A.  

A

F
P=  (2-5) 

 

2.4.1.3 Momentum and Impulse 

A body with mass m and velocity v has, per definition, a momentum p.  

mvp=  (2-6) 

When an external force acts on a body, the body will gain or lose momentum æp. This 

change in momentum is defined as the impulse. If a body is subjected to a positive 

force F from time t0 to t1, the velocity will increase and the momentum will increase 

to p1. The new momentum can be calculated by using Newtonôs second law 

dttFmvp
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ñ+=
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where the right expression is the generated impulse I from a force. 
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This represents the area under the force-time graph. The shock wave from an 

explosion is measured in pressure, which is a measurement of force acting on an area. 

Therefore, the impulse can also be written as 

dttPAI

t

t

ñÖ=
1

0

)(  (2-9) 

The area under the pressure-time graph is sometimes referred to as the impulse 

intensity i, transferred to the body indicated in Figure 2.21.  
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Figure 2.21. Simplified pressure-time curve. 

There are two extreme values of an impulse: infinitely high pressure for an 

infinitesimally short time and lower pressure for an infinitely long time, see 

Figure 2.22. The latter is more similar to a static load. A real impulse load will be 

somewhere in between. The infinitely high pressure during a very short time is called 

the characteristic impulse.  
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Figure 2.22. Two extreme cases of the pressure impulse: a) Characteristic impulse 

and b) pressure load. 

The response to a more general impulse can be explained by using damage curves. 

Those are curves that show the same damage for different combinations of forces and 

impulses. The concept of damage curves are further discussed and presented in 

Section 2.4.2.7. The characteristic impulse will be used in this thesis to estimate a 

response on the safe side when estimating the external work done. 
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2.4.1.4 Work  

Work equilibrium is a well-established method for analysing the response of a 

structure subjected to an external force. It relies on the law of energy conservation, 

which says that no energy can disappear, just transform. If a force acts on a structure 

the resulting work must be converted into kinetic or potential energy within the 

structure. Therefore, the method puts the external work We, caused by the external 

load, equal to the internal work Wi made by the structure; i.e.  

ie WW =  (2-10) 

The external work is force times distance, for example a force that moves an object. It 

can also be an impact where kinetic energy is transferred into potential energy. This is 

more similar to an explosion, where an impulse load strikes a structure and causes it 

to absorb energy by deforming. A characteristic impulse has a very short duration and 

the external energy can therefore be assumed to be the kinetic energy of the structure. 

This means that no energy is resisted as internal work. As soon as the impulse acts for 

a longer time, the structure will absorb some of the energy and the external work done 

will be smaller than for the characteristic impulse. The kinetic energy for a body with 

mass m is 

2

2mv
Ek =  (2-11) 

where v is the velocity of the body. By using equation (2-6) and assuming a 

characteristic impulse load, the external work can be described by the kinetic energy 

of the impulse as 

m

I
EW k

ke
2

2

==  (2-12) 

Energy is absorbed in the structure by deformation. Consequently, the stiffness of the 

structure and its ability to deform is important for the final response. As described in 

Section 2.3, three idealisations of materials are used. They will behave slightly 

different, and the internal work will be:  

Elastic  
2

2

el
i

ku
W =  (2-13) 

Plastic pli RuW =  (2-14) 

plasticElasto-  
plepm

elep

i uR
ku

W ,

2

,

2
+=  (2-15) 

The internal work can be interpreted as the area under the force-displacement curves 

shown in Figure 2.23. 
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Figure 2.23. Three different idealised material relations; linear elastic, ideal plastic       

and elasto-plastic. 

The maximum deformation can later be found from the work equilibrium 

equation (2-10). The deformation in the elasto-plastic model will follow the equation 

(2-13) until the reaction force reaches the yield reaction when the total deformation 

needs to be considered.  
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It is most often preferable to use a ductile material in extreme load situations, as long 

as the obtained displacement can be allowed. The ductile material will deform and 

dissipate more energy. The structure will be damaged through plastic deformation and 

will require reparation. However, this can be overlooked as long as safety is 

guaranteed for involved functions and people. To avoid total collapse and ensure 

safety, the deformation of columns for example must be limited so that they do not 

fail through second order effects. 

 

2.4.1.5 Strain rate 

The closer a structure is to an explosion, the higher the amplitude and the shorter the 

duration of the load. Consequently, structures close to an explosion may be subjected 

to a very intense, impulsive load. In this case the structural response differs 

considerably to a static load response; the design approach must therefore also differ. 

The loading from an explosion can be up to 100 million times faster than a static load. 

The high velocity of an explosion load results in a very high strain rate compared to a 

case with static loading. For static loading the value of strain rate is around 10
-5

 s
-1 

and 

for blast loading somewhere between 10
2
 s

-1
 and 10

3
 s

-1
 as illustrated in Figure 2.24.  
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Figure 2.24. Approximate strain rates for different loadings, based on 

Johansson (2000). 

A change of strain rate can also result in a change of properties for the material. It is 

known that the mechanical properties of concrete are affected by the rate of loading. 

Much research has been done on this subject in order to establish a relationship for the 

Dynamic Increase Factor (DIF), which is the ratio between static strength and 

dynamic strength. These studies show that the increased strain rate also results in an 

increased material strength, as shown in Figure 2.25. The value of the DIF differs a lot 

between tensile and compressive strength and it is also hard to evaluate the different 

test results that cause a large scatter. 
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Figure 2.25. An approximated relationship between the dynamic magnification factor 

and the strain velocity for compressed concrete, based on 

Johansson (2000).  

The effects due to the change in strain rate are divided into two main effects: viscous 

effects for lower strain rates and structural effects for higher strain rates. These effects 

are not discussed in here and for more information the reader is referred to 

Johansson (2000). The change of strain rate is also shown to affect the reinforcement 

steel, which results in some increase of yield and ultimate stress for higher strain 

rates. Strain rate is for example considered in the American design code, DoD (2008) 

but is neglected in this thesis. 

 

2.4.1.6 Wave propagation 

Explosions are rapid processes in which the whole structure may not be active. For 

instance, after an explosion the maximum moment in the front wall of a box structure 

can occur before any of the impacts are realised by the back wall. The information 

travels through a material as both a longitudinal and a transverse wave, see 

Figure 2.26. These are commonly referred to as pressure wave and shear waves. Shear 

waves cannot occur in liquids or gases and are weak in comparison to the pressure 

wave, Laine (2012).  
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Figure 2.26. Waves through a specimen: (I) material at rest (II) pressure wave, (III) 

shear wave, Laine (2012). 

According to Laine (2012) a pressure wave has the velocity 

)1( 2nr -Ö
=

E
cp  (2-19) 

where E is the elastic modulus and r is the density of the material. This should be the 

case if an axial force acted on the beam. However, the information in a beam loaded 

perpendicularly to its longitudinal axis is more likely to be transferred by transverse 

waves to the support. The speed of a shear wave through a material depends on the 

materialôs shear modulus G, Laine (2012). 

r

G
cs =  (2-20) 

where, the shear modulus can be written as  

( )n+
=

12

E
G  (2-21) 
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2.4.2 Equivalent SDOF system 

2.4.2.1 Introduction  

A single degree of freedom system, abbreviated SDOF, is a convenient model to use 

when analysing dynamically loaded systems. It consists of a body with the mass m 

and a spring with stiffness k, see Figure 2.27. The body is only free to move in one 

direction and the position can be described with one coordinate, Biggs (1964). This 

body is also considered completely rigid with no internal movement within. In reality 

vibrations of a system will always have some damping from internal friction forces 

for example. Therefore, the mass-spring system is often complemented with a damper 

c, which will decrease the amplitude for every oscillation.  

 

(a) (b) 

F(t) 

m 

k 

F(t) 

m 

k c 

 

Figure 2.27. Forced SDOF-systems: a) damped b) undamped. 

The SDOF system can either vibrate freely or be forced by a time-dependent force. If 

the system is subjected to explosion loading, it is initially forced to deform for a very 

short time. After a short time the external force will disappear and the behaviour is 

better represented by a freely vibrating system. Although the shock wave forces the 

system to deform during the first milliseconds, the maximum displacement and 

section forces can often occur much later. This depends on the load and the properties 

of the structure. 

The maximum displacement is of interest and they occur very soon after the load 

arrival. The effect of damping will be low on the first oscillation, where the maximum 

displacement normally occurs but affects the later oscillations more. Therefore, it is 

not necessary to include dampers when considering maximum displacement as a 

result of explosion loads, Johansson and Laine (2009). However, it is important to 

realise that dampers should be included if the continuing state of vibration is to be 

considered. In a real structure it is not likely that the maximum values occur after the 

first oscillation. With that in mind, damping effect is mainly neglected in this thesis 

apart from in the theory section for comprehensiveness. 
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2.4.2.2 Equation of motion 

If a forced damped SDOF system is considered, it is recognised that the displacement 

and velocity will create resisting forces from the damper and the spring. If the body is 

accelerating it will have an inertia force in the accelerating direction according to 

Newtonôs second law.   

 

 

F(t) 
m 

ucRdamper
#Ö=

c 

ukRspring Ö=  
u## 

 

Figure 2.28. Free body diagram of a SDOF-system. 

As velocity and acceleration are the derivative and second derivative, respectively, of 

the displacement with respect to time, the equation of motion can be found as,  

)(tFkuucum =++ ###  (2-22) 

from established force equilibrium. 

 

2.4.2.3 Transformation into an equivalent SDOF-model 

A structure has multiple degrees of freedom (MDOF) but it can be turned into an 

SDOF system by choosing a ñsystem pointò and applying an equivalent mass, a 

damper and a resisting force Biggs (1964). The system point is often chosen as the 

centre point or the point where the displacement is largest, Johansson and Laine 

(2009). The relation between the parameters in the equivalent SDOF system and in 

the MDOF system can be described with transformation factors. 

Transformation factors are derived from an assumed deformation shape u(x), 

Johansson and Laine (2009). They must be chosen with regard to support conditions, 

stiffness distribution, load profile and material model. Therefore, advanced analytical 

solutions may be necessary for complex loading cases and when the stiffness 

distribution varies. Since the factors are directly influenced by the assumed 

deformation shape, they must be individually derived for every structural element and 

load condition. 

Since the damping effect is neglected, see Section 2.4.2.1, three transformation factors 

are of interest when converting a structural element into an equivalent SDOF system 

for impulse loading. They are denoted with a ə with index to the parameter they affect 

mm me k=  (2-23) 

kk ke k=  (2-24) 

FF Fe k=  (2-25) 

Where letters without index are the structural elements real mass, stiffness and force 

respectively and index e stands for equivalent parameters in the SDOF-system. By 

considering energy conservation for the structural element and the corresponding 

equivalent SDOF the factors can be derived. əm comes from the conservation of 
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kinetic energy, ək comes from conservation of internal energy and əF from 

conservation of external energy. According to Biggs (1964) the transformation factors 

for internal and external energy are equal, i.e. 

Fk kk=  (2-26) 

The transformation factors can be found from,  

ñ
=

=

=

Lx

x s

m dx
u

xu

L
0

2

2)(1
k  (2-27) 

ñ
=

=

=

Lx

x s

F dx
u

xu

L
0

)(1
k  (2-28) 

the derivation is shown in e.g. Johansson and Laine (2009). By implementing (2-26) 

in equation (2-22), the equation of motion for a structural element can be written as 

)(tFkuucummF =++ ###k  (2-29) 

where 

F

m
mF

k

k
k =

 (2-30) 

Values of these transformation factors for some different load cases and material 

models for beams and slabs can be seen in Table 2.1, Table 2.2 and Table 2.3.  
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Table 2.1. Transformation factors for a beam subjected to a point load. From 

Johansson and Laine (2009). 

 

Point load on beam element 

 

 
 

 
 

 
 

 

Elastic deformation curve 

Mk  0.486 0.371 0.445 0.236 

Fk  1.000 1.000 1.000 1.000 

MFk  0.486 0.371 0.446 0.236 

 Plastic deformation curve 

Mk  0.333 0.333 0.333 0.333 

Fk  1.000 1.000 1.000 1.000 

MFk  0.333 0.333 0.333 0.333 

 

Table 2.2. Transformation factors for a beam subjected to uniform load. From 

Johansson and Laine (2009). 

 

Uniformly distributed load on beam element 

 
 

 

 
 

 
 

 

Elastic deformation curve 

Mk  0.504 0.406 0.483 0.257 

Fk  0.640 0.533 0.600 0.400 

MFk  0.788 0.762 0.805 0.642 

 Plastic deformation curve 

Mk  0.333 0.333 0.333 0.333 

Fk  0.500 0.500 0.500 0.500 

MFk  0.667 0.667 0.667 0.667 
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Table 2.3. Transformation factors for a plate subjected to a uniformly distributed 

load, Based on Augustsson and Härenstam (2010). 

 

Uniformly distributed load on slab element 

 

w 

a 

 

 

w 

a 

 

 Elastic deformation curve 

Mk  0.250  

Fk  4/p
2
  

MFk  0.617  

 Plastic deformation curve 

Mk  (1+a/w)/6 (1+a/w)/6 

Fk  (1+a/2w)/3 (1+a/2w)/3 

MFk  (1+a/w)/(2+a/w) (1+a/w)/(2+a/w) 

 

The transformation factors have a good agreement with reality when an elastic 

response of the structure is assumed, see Augustsson and Härenstam (2010). In the 

aforementioned thesis, significant divergence between hand calculations and FE-

analyses is found for beams assuming ideal plastic behaviour and for plates assuming 

both plastic and elasto-plastic behaviour. This is believed to be influenced by the 

assumption about constant deformation shape and the influence of multi-linear 

response in beams. Moreover, it recommends that more studies on these phenomena 

must be carried out. The problems with transformation factors are also addressed by 

further studies in Chapter 4. 

 

2.4.2.4 Work  

A system in motion is affected by external, internal and kinetic energy, which must 

always be in equilibrium. The transformation factors described in Section 2.4.2.3, 

relate the real energy in the system with the energy in an equivalent SDOF system.  

2

2

sm
k

mv
W

k
=  (2-31) 

sFi RuW k=
 

(2-32) 
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sFe FuW k=
 

(2-33) 

As shown in section 2.4.1.4, the external energy of a SDOF-system for an impulse 

load can be expressed as: 

e

k
k

SDOF

e
m

I
WW

2

2

==  (2-34) 

This assumes no energy is lost from deformation and that the work done by the 

external force is equal to the external all energy will become kinetic energy. The 

problematic part is deciding which mass should be used in equation (2-34). Johansson 

and Laine (2009) have used me=kmF Ām. This results in an equivalent SDOF energy, 

which will only be adequate if external and internal energy levels are compared in the 

SDOF system. However, if the SDOF energy is going to be compared with another 

analysis, it is necessary to consider equation of motion for the equivalent SDOF-

system in its basic form when investigating and comparing energy levels with a FE-

solution, i.e.  

Fkuum FFm kkk =+##  (2-35) 

instead of using the simplified expression in equation (2-29). In order to derive the 

real work for an SDOF model, it is necessary to go back to the definition of impulse 

in Section 0. 

mvdttFI

t

t

==ñ
1

0

)(  (2-36) 

For an equivalent SDOF-system this should be multiplied with the transformation 

factors, i.e.  

ñ ==
1

0

)(

t

t

smF

SDOF mvdttFI kk  (2-37) 

A characteristic impulse means that  

ñ ÖÖ==
1

0

)(

t

t

k lbidttFI  (2-38) 

and hence, the momentum for the equivalent mass in the SDOF-system can be 

expressed as 

kFsm Imv kk =  (2-39) 

and the square of the midpoint velocity can be obtained as 
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If this is inserted into equation (2-31) the kinetic energy becomes 

F
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==  (2-41) 

If this is compared with the expression used by Johansson and Laine (2009), it can be 

seen that the additional term kF is not considered and that it would result in a too high 

energy since kF < 1.0. Moreover, the internal work is also overestimated since a 

transformation factor is only used on the kinetic energy. 

Calculating the energy incorrectly will not affect the energy balance nor the resulting 

displacement since the transformation factor for the load cancels out when 

considering the individual parts of the equation of motion, i.e. 

iFF

mF

k
k W

ku

m

I
E ===

22

22

kk
k

 (2-42) 

Nevertheless, if the absolute energy in a FE-analysis and an equivalent SDOF-system 

is compared it is necessary to calculate the external and internal energy as shown in 

equation (2-41) and (2-42). 

 

2.4.2.5 Dynamic reaction 

In order to determine the maximum shear forces in the system it is of interest to 

determine the dynamic reaction force at the supports. The equivalent SDOF-system is 

modelled to have the same displacement as the system point in the real system, but the 

internal reaction force in the SDOF-system is not necessarily the same as the real 

reaction force. In order to obtain this reaction, it is necessary to set up a dynamic 

equilibrium where the inertia force I(t) is considered in the calculations. The inertia 

force has the same shape as the assumed deflection shape of the structure. The 

magnitude and the position of the resultant of the inertia force can be determined, as 

shown in Appendix B.2. Moment equilibrium can be established around the resultant 

and an expression for the dynamic reaction can be obtained. In Biggs (1964) this 

dynamic reaction is solved for beams and two-way slabs with different kinds of 

boundary conditions and load cases for both elastic and plastic analysis. The data is 

then presented in tables.  

For clarification, an example of a simply supported beam with evenly distributed load 

can be studied, see Figure 2.29a. To establish dynamic equilibrium, half of the beam 

is considered as shown in Figure 2.29b. It is known that in the middle of the beam the 

shear force S is equal to zero and the dynamic bending moment can be expressed in 

terms of the resistance R as:  

8

RL
mf =  (2-43) 
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Figure 2.29. Determination of dynamic reactions. Based on Biggs (1964). 

As mentioned above, the distribution of the inertia force corresponds to the assumed 

deflection shape which is used to determine the position of the resultant. For a simply 

supported beam with an evenly distributed load, this shape can be expressed as:  

() ( )433

2
2

5

16
xLxxL

L
x +-=F  (2-44) 

When the position of the resultant is known, see Appendix B.2, moment equilibrium 

is established around the resultant of the inertia force and the following expression is 

obtained:  
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Equation (2-45) is then solved for V with help of the expression for the dynamic 

bending moment and an expression for the dynamic reaction in terms of load and 

resistance is obtained, see Equation (2-46). 

FRV 11.039.0 +=  (2-46) 

Both R and F in this case are functions of time but this equation must also be valid for 

a static case where the shear force V should be equal to 0.5F. If equation (2-46) is 

studied and the fact that R=F in case of static loading, it can be seen that this equation 

also holds for this case.  

The same procedure can be performed for various support conditions for plastic and 

elastic cases. These are tabulated in Biggs (1964). The dynamic reaction for a simply 

supported beam with ideal plastic behaviour can be written as 

FRV 12.038.0 +=  (2-47) 

Fortifikationsverket (2011) has derived an expression, shown in Appendix B.1, for the 

reaction force at the support for a simply supported beam as 
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where əF and əm are the transformation factors for force and mass respectively. This 

method is very similar to that of Biggs (1964) 

504.0640.0 == mF kk
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(2-49) 

and for the plastic case 

333.0500.0 == mF kk
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(2-50) 

However, an advantage of Fortifikationsverketôs approach is that it lets the designer 

use a varying deformation shape by assuming the transformation factors over time and 

hence the position of the resultant may not have to be calculated for all displacement 

shapes that might occur. It is also clearer what actually affects the support reaction 

and will therefore also be used in this thesis. 

 

2.4.2.6 Equivalent static load 

A dynamic load can be translated into an equivalent static load in order to make it 

more convenient to calculate section forces. Moreover, designers are generally more 

familiar with static loads. The corresponding static load is obtained by deciding the 

load that generates the same external work as the impulse load. In line with definitions 

of internal work, Section 2.4.1.4, different expressions will be obtained depending on 

which material response is assumed. The equivalent static load corresponds to the 

response that is obtained when the maximal deformation is obtained and consequently 

does not follow the behaviour up to that point. The equivalent static load can be 

written as 

m

k
ɤIQ kel ==         where          w  (2-51) 

pl

k
pl

mu

I
Q

2

2

=  (2-52) 

for elastic and plastic response respectively, Johansson and Laine (2009). Ik is the 

characteristic impulse, m is the mass, k is the stiffness and upl is the plastic 

displacement. This corresponds to the ultimate resistance in the structure i.e.  

elel kuQ =  (2-53) 

mpl RQ =  (2-54) 
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When the equivalent static load is established it can be applied on the structure and 

the moment and shear force distributions can be found. The static equilibrium 

calculations mean that the reaction forces on the system are not governed by the same 

parameters as the normal static approach. This gives the reaction force in the support 

as 

22

elel
el

kuQ
V ==  (2-55) 

22

mpl

pl

RQ
V ==  (2-56) 

And bending moment in the centre as 

88
,

LkuLQ
M elel

elf ==  (2-57) 

88
,

LRLQ
M mpl

plf ==  (2-58) 

The dynamic bending moment is the same as derived in Biggs (1964). However, the 

support reaction is higher according to this method once the positive phase of the 

pressure wave has passed i.e. F = 0. Moreover, the equivalent static load does not take 

the early shear force resulting from the inertia forces into account as Biggsô and 

Fortifikationsverketôs approaches do, Section 2.4.2.5. Johansson and Laine (2009) 

explain that high shear forces can initially occur close to the supports and that these 

must be further investigated. This statement refers to this phenomenon of initial high 

shear forces. 

Since the plastic equivalent load is governed by the plastic deformation, an upper 

limit to the displacement must be introduced and will consequently be the failure 

criterion. The possibility of large rotational deformations will decrease the needed 

equivalent static load and hence the reaction forces, Johansson and Laine (2009). The 

elastic approach is rather straight forward as the moment and shear capacities are 

compared with the maximum load effect. However, the maximum section forces in a 

linear elastic analysis do not depend on the parameters taken into account in a static 

analysis. The maximum field moment in a simply supported structure with elastic 

response can be calculated as 

m

kLiLILQ
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 (2-59) 

For a rectangular section the stiffness for an equivalent SDOF system can be written 
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And the mass for the equivalent SDOF model is 
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Lhbm m ÖÖÖ= rk  (2-61) 

The maximum field moment can therefore be calculated to 
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=  (2-62) 

This shows that the maximum field moment in a structure with elastic response is 

independent of the length. 

 

2.4.2.7 Iso-damage curves 

The worst case scenarios are defined by extreme cases and these are often used for 

design. The two extreme cases for an impulse load are described in Section 0, which 

are infinitely high pressure with infinitesimally short duration or a low pressure for an 

infinitely long duration. The response to a more general load, as seen in Figure 2.30, 

can be obtained by using iso-damage curves. These are curves that show the structural 

response to different combinations of pressure and impulse. The curve defines the 

combination of pressure and impulse that will cause a certain deformation, which can 

later be used to investigate if the structure will fail. As long as the actual pressure and 

impulse is lower than the limiting line, no failure is expected.  

 

Time, t 

Pressure, P 

P1 

i1 

t1 
 

Figure 2.30. A general pressure-time curve. 

An iso-damage curve can be found by solving the equation of motion for different 

load cases and thereby obtain a failure line for any combination of pressure and 

impulse. As a consequence, the shape of the curve is dependent on the material 

resistance and the load shape. Iso-damage curves are constructed by e.g. 

Nyström (2006) and Johansson and Laine (2009), the reader is referred to those for 

more information. The general appearance of iso-damage curves for different load 

shapes are shown in Figure 2.31. It is often convenient to express pressure and 

impulse with ratios between the actual peak pressure and impulse intensity and their 

characteristic values. 

k

I
i

i1=g  (2-63) 

k

F
P

P1=g  (2-64) 
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Figure 2.31. Iso-damage curves for 3 load shapes. Based on Krauthammer 

et. al. (2008) 

In many cases it is adequate to use the characteristic impulse. Johansson and 

Laine (2009) give an estimation of how large the error will be when using the 

characteristic impulse compared to the real load. This is in an elastic case a function 

of the structural period T and the load duration t1, see Table 2.4. The type of load 

curve is defined by n, which denotes the power of the load curve. gI is the ratio 

between the actual impulse and the characteristic impulse and gF is the ratio between 

peak force and the characteristic peak force as shown in equation (2-63) and (2-64). It 

means that if the ratio between the structural period and the load duration is higher 

than the number in the table, the percentage of difference in displacement shown in 

the left column can be expected. For plastic response, no structural period can be 

determined and the difference in displacement is only a function of gI and gF and is 

shown in Table 2.5. 
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Table 2.4.  Displacement error for elastic response when using the characteristic 

impulse compared to the real load curve. From Johansson and 

Laine (2009). 

del [%] gI [-] 

I

F

t

T

g

g
=

1  

n  = 0

 I

F

t

T

g

g

2

1

1

=

 

n  = 1

 I

F

t

T

g

g

3

1

1

=

 

n  = 2

 

1 1.01 12.89 10.60 8.84 

2 1.02 9.22 7.45 6.13 

3 1.03 7.51 6.10 5.00 

4 1.04 6.52 5.33 4.35 

5 1.05 5.86 4.75 3.90 

10 1.10 4.20 3.41 2.78 

15 1.15 3.48 2.82 2.29 

20 1.20 3.06 2.47 1.98 

25 1.25 2.78 2.23 1.77 

50 1.50 2.10 1.56 1.18 

75 1.75 1.80 1.23 0.91 

100 2.00 1.57 1.02 0.74 

     

Table 2.5.  Displacement error for plastic response when using the characteristic 

impulse compared to the real load curve. From Johansson and 

Laine (2009). 

dpl [%] gI [-] gF [-]

 n  = 0

 gF [-]

 n  = 1

 gF [-]

 n  = 2

 

1 1.005 100 - - 

2 1.010 52 70 77 

3 1.015 35 46 52 

4 1.020 27 35 39 

5 1.025 21 29 32 

10 1.049 11 15 17 

15 1.072 7.7 10 12 

20 1.095 6.0 8.0 9.0 

25 1.118 5.0 6.7 7.5 

50 1.225 3.0 4.0 4.5 

75 1.323 2.3 3.1 3.5 

100 1.414 2.0 2.7 3.0 
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In general, it is likely that the structure has more than one failure mode with another 

governing equation of motion, Krauthammer et al. (2008). This can be incorporated in 

the diagram easily. The structureôs damage curve will then be a threshold curve of the 

lower values as seen in Figure 2.32. Failure will occur in both failure modes if the 

combination of pressure and impulse is in the upper right quadrant. In the example 

given, failure in only mode 1 will occur for low impulses with high pressure while 

low pressure with long duration will cause the structure to fail in mode 2.   
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Figure 2.32. Iso-damage curves for two potential failure modes. The lower values of 

these will create a threshold curve indicated with a dotted line. Based on 

Krauthammer et al. (2008). 

 

2.5 Direct shear 

2.5.1 Static response 

The direct shear phenomenon has been observed in static loadings with small shear 

span to effective depth, i.e. in deep members, Kriz and Raths (1965) as cited by 

Ross (1983). Direct shear can occur in areas with geometrical or load discontinuity, 

Crawford et al. (1999), tending to be brittle and to cause a sudden failure. It is a 

localised shear response of a structural concrete element characterised by cracking 

and slippage almost perpendicular to the longitudinal axis. Mattock and 

Hawkins (1972) gave a hypothesis of the phenomenon from experimental testing. 

Firstly, small inclined cracks develop along a shear plane, see Figure 2.33a. These 

cracks will define compression struts analogous to normal shear cracks but much 

smaller, both in length and width. The compression struts will carry the applied shear 

force by compression and transverse action since they are surrounded by uncracked 

concrete on both sides. Force equilibrium of such a strut can be established, as shown 

in Figure 2.33c, where V is the applied shear force, C is the compression component 

of the resistance, Vô is the transverse resistance of the strut, T is the tension 

reinforcement force and N is a potential tensile normal force. As the load increases the 

struts will rotate and compress, creating a ñslipò along the shear plane. Flexural 

reinforcement will be strained and work in dowel action when slip takes place. A 

consequence of the rotation is that the ends of the cracks will propagate vertically. A 
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failure plane can therefore either form in the shear plane or a plane parallel to the 

shear plane. Eventually, the concrete compression struts will fail in combined 

compression and shear action, and the reinforcement steel will yield, causing the 

whole section to shear off with a more or less vertical failure surface.  

 

V V 

T+N 

V 
C 

(a)    (b)    (c) 

 

Figure 2.33. (a) Small diagonal cracks form along a shear plane. As they rotate, the 

cracks will propagate slightly vertically (b). Hence, the actual failure 

can occur in a parallel plane to the original shear plane. The resistance 

can be described with a strut and tie analogy (c), based on Mattock and 

Hawkins (1972). 

Consequently, vertical stirrups will not contribute to the shear resistance except by 

confining the concrete and providing support for the flexural reinforcement which acts 

in dowel action.  

Concrete shrinkage or accidental damage can cause a pre-existing crack through the 

depth of the member. The direct shear resistance will always be lower for a shear 

plane with an existing crack since the resistance is only governed by shear transfer 

along the cracks, aggregate interlocking and dowel action of the reinforcement, 

Mattock and Hawkins (1972). However, if the section is heavily reinforced, it will 

have a similar response to an initially uncracked section. In this thesis shrinkage of 

concrete will not be considered and the elements are assumed to be intact when 

loaded. 

 

2.5.2 Dynamic response 

Dynamic direct shear failures have been reported in experiments by Kieger 

et al. (1980-1984) and Slawson (1984), see Figure 2.34. These are observed close to 

the supports short after the arrival of the shock wave for highly impulsive loads. 

According to Low and Hao (2002) a high stiffness with a short span increases the risk 

for direct shear failure. It has also been shown that a load with high amplitude for a 

short duration increases the risk for direct shear failure. If the structure survives the 

direct shear mode, it will go into flexible mode. The early behaviour of a beam 

subjected to an impulse load must therefore be studied in order to explain what causes 

these types of failures.  
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Figure 2.34.  Slab that has developed direct shear behaviour, Slawson (1984) 

It has been shown in previous research (Slawson 1984; Kieger and Getchell 1980-

1984; Johansson and Laine; 2009, Nyström, 2006; Augustsson and Härenstam; 2010) 

that the initial deformation shape for a structure subjected to blast loading is not the 

same as that predicted at maximum deformation. Within the first few milliseconds 

after load arrival the deformation shape is characterised by a nearly rigid body motion 

of the centre part of the element as shown in Figure 2.35. The un-deformed parts of 

the element close to the supports have not deformed as much, which creates a large 

difference in deformation over a small length. No flexible behaviour is observed in 

the early time span, which suggests that the direct shear failure mode and the flexible 

failure mode can be considered independent of one another.  

 

 

Figure 2.35. Research has indicated that a structural element subjected to an impulse 

load will initially deform as a rigid body motion. 

The theory behind dynamic direct shear failure mode is not well understood. One 

possible reason of the early behaviour is explained by Ross (1983). He uses simple 

elastic wave propagation theory to explain reflections of the shock wave approaching 

the element, see Figure 2.36. After the wave has progressed through the depth of the 

member, it encounters a boundary between the edge and the air or supports. The wave 

is transmitted into the supports while it completely reflects at the edge of the beam in 

between the supports since the impedance of air is close to zero. As a result, the 

relative difference between the velocities will be twice the previous velocity, which 

will cause a velocity discontinuity close to the support, and therefore a high shear 

force.  
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Figure 2.36. Ross (1983) explains the dynamic direct shear phenomenon with elastic 

wave theory in which the wave is transmitted at the supports and totally 

reflected in the centre. This generates a relative difference of double 

velocity in the centre part compared to the velocity at the supports. 

Another way of explaining the early behaviour is made by Johansson and 

Laine (2009) and previous Masterôs theses; Nyström, (2006), Augustsson and 

Härenstam, (2010). They realise that the information of a load travels with an 

approximate velocity of 3500 m/s in concrete. As a result, the centre part will not be 

aware of the support conditions before information about this has reached them. The 

boundary conditions can therefore be seen as time dependent, where they are initially 

not active and later moves with the information speed in the structure. The governing 

speed should probably be the velocity of a shear wave. 

Since the centre part moves much more and faster than the supports, a discontinuity 

region will occur close to the supports with very high shear inertia forces. These can 

be calculated with for example, Biggs (1964) or the equivalent static load concept 

described in Section 2.4.2.6. However, it is important to remember that these methods 

are only valid when the assumed deformation shape takes place.  

Ardila-Geraldo (2010) stated that a structure will fail in shear if the shear demand is 

larger than the capacity. He investigated the actual shear demand at the supports by 

comparing with experiments and found that the support reaction can be found by 

varying the deformation shape and stiffness in an SDOF model. He derived an 

expression for the initial stiffness by taking the rigid body motion into account. This 

expression was later calibrated by FE analysis and experimental testing. He proposed 

that the stiffness should be taken as 
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where T is the structural period and ks is the theoretical bending stiffness assuming the 

elastic flexural displacement shape. The relationship is illustrated in Figure 2.37. 

 

 

 

 

Stiffness, k 

Time, t 
0.1T 

ks - 

10ks  

 

Figure 2.37. Stiffness variation derived by Ardila-Geraldo (2010), assuming a near 

rigid body motion. 

The support reaction is then calculated with a modified Biggs equation 

RtFtV ba += )()(  (2-66) 

where a and b have been calibrated from FE-analyses and 

Tt 1.0when  12.002.0 ¢¢¢b  (2-67) 

ba -= 5.0
 

(2-68) 

It is important to find the correct initial reaction force at the supports in order to 

investigate the direct shear behaviour. Therefore a study on the shear force at early 

stages will be carried out in Chapter 6. 

 

2.5.3 Simplified model for dynamic direct shear 

An SDOF model can be used to explain the behaviour of direct shear analogously to 

the flexible case. The system point should be taken in a point very close to the 

supports. The shear force at the support should be evaluated and used in this model. 

This is done by using the flexible equation of motion, equation (2-29), and calculating 

the dynamic reaction force with Biggsô, Fortifikationsverketôs or the equivalent static 

load method, described in Sections 2.4.2.5 and 2.4.2.6. Since the direct shear happens 

very early, before any significant flexible behaviour, the flexible SDOF equation of 

motion and the direct shear equation of motion, equation (2-29)  and (2-69) can be 

considered uncoupled. 

The initial response when a structure is subjected to an explosion is a rigid body 

motion, which means that the transformation factors used to transform the structure to 

the single degree of freedom system is close to kmF = 1. The shear slip, D, at the 
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supports can then be calculated with the simplified equation of motion for the direct 

shear case, see Figure 2.38. As for the flexible case, damping is neglected.  

)(tVRM ss =+DÖ##  (2-69) 

 

 

V(t) 

()()()ttt DDD ,,###  

Rs 

Ms 

 

Figure 2.38. Equivalent SDOF-model for direct shear, based on Crawford et al., 

1999). The stiffness Rs can be taken from the direct shear resistance 

function in Figure 2.39. Damping effects are neglected. 

 

The resistance Rs is taken from the direct shear resistance function developed by 

Hawkins (1974). He used static tests to find a relationship between the shear slip and 

the shear stress. The relationship was later modified by Krauthammer (1986) in order 

to take rate effects and normal forces into account by applying a factor 1.4 to the 

relationship found by Hawkins. The relationship is shown in Figure 2.39 and is 

explained below. In this thesis, rate effects have been ignored to give results on the 

safe side. 
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Figure 2.39.  Shear resistance versus the slip along a shear plane. The enhanced 

curve takes strain rate and normal forces into account.  Based on 

Mattock and Hawkins (1972) and later modified by Krauthammer 

(1986). 

The resistance function is an empirical model based on static tests. The first segment 

from 0-A has an elastic response until a slip of 0.1 mm has been reached. For shear 

slip in this range, the influence of reinforcement dowel action can be neglected. Thus, 

the elastic part is independent of the amount of reinforcement crossing the shear 

plane. For very low slips, the slip can be approximated with the crack width. This 

leads to the formulation of the shear resistance in segment 0-A, see Table 2.6. The 

first equation can be used for both pre-cracked and uncracked sections. For larger 

shear slips, D>D1, dowel action becomes significant and should be considered. 

Between A and B the shear resistance will increase until a shear slip of 0.3 mm is 

reached.  The resistance will remain constant until a slip of 0.6 mm is reached. For 

large specimens, the plateau can be somewhat longer. The stiffness is negative 

between C and D, independent of the amount of reinforcement and only slightly 

dependent on the concrete strength. The resistance will later remain constant until a 

failure shear slip æmax is reached. This segment is merely dependent on reinforcement 

dowel action. The resistance function equations are shown in Table 2.6.  
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Table 2.6.  Definition of Direct Shear Resistance Function converted into SI-units 

see Figure 2.39. Based on Crawford et al. (1999). 

Region Definition 

0-A The response is elastic, and the slope, ke of the curve defined by the shear 

resistance, te, for a slip of D1 = 0.1 mm. That resistance is given by the 

expression 

ce f157.0138.1 +=t  

Where both te  and fc are in MPa. The initial part should be taken as elastic 

to not more than
2

m
e

t
t¢ . 

A-B The slope of the curve decreases continuously with increasing 

displacements until a maximum shear strength, tm, is reached at a slip of 

D2 = 0.3 mm. The maximum strength is given by the expression 

cyvtcm fff 35.08.0664.0 ¢+= rt  

where tm, fc and fy are in MPa and rvt is the ratio between the total area of 

reinforcement crossing the shear plane divided by the area of the plane. fy 

is the yield strength of the reinforcement crossing the plane. The direction 

of the reinforcement is not discussed but should have an impact on the 

resistance. 

B-C The shear capacity remains constant with increasing slips. C corresponds 

to a slip of D3 = 0.6 mm. 

C-D The slope of the curve is negative, constant and independent of the amount 

of reinforcement crossing the shear plane. The slope is given as 

[ ]3N/mm     0295.0543.0 cu fk +=  

D-E The shear capacity remains constant. The deformation at E varies with the 

level of damage, with a failure at a slip of  

( )1423.0max -=D xe  

Where 

bc df
x

/

18.5
=  

And db is the bar diameter in mm. The limiting shear stress is defined as

su

c

sb

L f
A

A
ö
ö
÷

õ
æ
æ
ç

å
= 85.0t  

where is Asb the area of the bottom reinforcement, Ac is the area of the 

concrete section and fsu is the ultimate strength of the bottom 

reinforcement. 
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Chee (2008), evaluated previous carried out experiments by Kieger and Getchell 

(1982), with the two SDOF models. These experiments were performed on slabs and 

the resistance function was obtained by combining the direct shear resistance in each 

direction. Chee (2008), found good agreement and could use the SDOF models to 

predict which failure mode that would occur. The resistance function was taken as:  

yx RRR +=  (2-70) 

Where Rx and Ry are the resistance function for the slab in each direction. Reliability 

analyses have also been performed with this resistance function by Low and How 

(2002) with good accuracy. 

 

2.5.4 Design approaches 

2.5.4.1 Swedish design approach 

The concepts of direct shear, described by Swedish fortification Agency, 

Fortfikationsverket, (2010), are presented in this section. First it is shown how the 

shear force effect is calculated and then how the resistance is calculated. The shear 

force should be checked for the initial elastic response and in the elasto-plastic 

oscillating phase.  

A shear span is calculated by taking the early rigid body motion into account and is 

used to give a lower limit for when normal shear resistance can be used. If the shear 

span to effective depth is less than 1.5 a strut and tie model should be used according 

to Boverket (2004). This could be seen as the direct shear resistance. The limit is 

defined as 

5.1¢
d

at  (2-71) 

The procedure will not be explained in detail, but worth mentioning that the strut and 

tie method does not take into account that the crack is almost vertical. For more 

information the reader is referred to Chapter 6 in Boverket (2004). 

The normal approach for shear design is described below. The maximum total 

reaction can be calculated as: 

baqbapV eq

m

F

m

F
tot ÖÖ+ÖÖöö

÷

õ
ææ
ç

å
-=

k

k

k

k 22

1  (2-72) 

where a and b are the length and width of a slab and for a beam a is the length and b 

is the loaded width of the beam. əF and əm are the transformation factors for the 

element, see section 2.4.2.6 for values, qeq is the equivalent static load and p is the 

peak pressure. Plastic response is assumed if 

2>
eqq

p
 (2-73) 

and the plastic transformation factors should then be used. From this, the support 

reaction can be calculated as 
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totvSd VkV =  (2-74) 

where kv depends on the deformation shape of the structure. For a simply supported 

beam kv will be 0.5. 

The shear capacity shall be examined in the shear span, i.e. half the distance between 

the support and zero shear force. It can be shown that the shear effect at this point is 

half the support reaction, see Appendix C for derivation.  

TOTvd VkV 5.0=  (2-75) 

The shear span aŰ can be calculated as 

supportssimplyfor25.0025.0
p

q

L

a eq
+=t  (2-76) 

supportsfixedfor35.001.0
p

q

L

a eq
+=t  (2-77) 

where L is the length of the span, qeq is the equivalent static load and p is the peak 

pressure. For slabs, L should be replaced by the shorter width b since it gives a 

smaller shear span and a higher shear effect. From this expression it can be identified 

that the shear span is increasing for lower pressures. Moreover, it is clear that using 

equation (2-71) the limit for using normal shear force resistance for a simply 

supported beam is defined as 

5.125.0025.0 ¢
ö
ö

÷

õ

æ
æ

ç

å
+=

d

L

p

q

d

a dt  (2-78) 

The capacity of a concrete section without influence of shear reinforcement is a limit 

for a form of crushing of compression strut and is defined as 

bdkV cc =  (2-79) 

where d is the effective depth and kc is depending on the shear span, the protection 

level and reinforcement amount.  

s

f
kkc

r

t=  (2-80) 

Here s is a factor for the protection level used by the Swedish military and depends on 

how much damage the exposed structure can be allowed: 

B3andB2B1, levelprotectionfor 2.1=s  

C levelprotectionfor0.1=s  

and fɟ is a factor that depends on the amount of reinforcement (ɟ) 
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and kŰ depends on the shear span and the concrete strength.  
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If the shear force capacity is not sufficient, i.e. Vd>Vc according to equations (2-75) 

and (2-79), shear reinforcement must be introduced. The required shear reinforcement 

can be calculated as 
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For the oscillating elasto-plastic response (2-86) 

where minimum values Vd,min and Vtot,min are obtained by setting p/q=1 and L as the 

shorter span b for slabs. The shear reinforcement can then be calculated as  

 (2-87) 

where ɗ is the angle of shear reinforcement to the flexural reinforcement in tension. 

Consequently, no consideration is taken that the shear crack can be vertical. 

In case of elastic response the shear reinforcement should be evenly distributed over 

the length 

ö
ö

÷

õ

æ
æ

ç

å
-+Ö=

d

c

V

V
ax 11t  (2-88) 

In case of elasto-plastic response the shear reinforcement should be evenly distributed 

over the length 
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where the distance between the shear reinforcement should not be greater than 

0.75Ā(1+cotɗ)Ād. L should be set as the shorter span b for slabs. 

 

2.5.4.2 American design approach 

DoD (2008) defines direct shear as the rapid growth of a vertical crack through the 

depth of a concrete member. Diagonal steel reinforcement anchored in the support can 

prevent this and is required if the  

- design support rotations are greater than 2° 

- concrete direct shear capacity is insufficient 

- section is in tension.   

The direct shear capacity of concrete is considered to be zero if the rotation is greater 

than 2° or if the section is in tension, which can be the case with an indoor explosion. 

Diagonal reinforcement is not recommended to be designed in beams. Instead, 

rotations should be limited and the concrete direct shear capacity sufficient. The direct 

shear capacity is not zero for simply supported members even if the support rotation is 

greater than 2°. Consequently there is no need for diagonal reinforcement if the direct 

shear capacity is adequate. The direct shear capacity for concrete can be written as for 

a slab and beam respectively.  

slabsfor'16.0 bdfV dcd =  (2-90) 

beamsfor  '18.0 bdfV dcd =  (2-91) 

where Vd is the direct shear capacity of an element with width b and effective depth d. 

fôdc is the ultimate dynamic compression strength of the concrete, which is 10% 

greater than the ultimate compression strength.  

cdc ff Ö= 1.1'  (2-92) 

If diagonal bars are required, the required area can be expressed as 

( )
()asin' Ö

-
=

ds

ds
s

f

VbV
A  (2-93) 

Where As is the required shear reinforcement bar area, Vs is the ultimate shear force at 

the face of the support per unit width, a is the angle of the bars and fôds is the dynamic 

design stress for the reinforcement, which depends on the maximum support rotation. 

How to determine the dynamic design stress for different support rotations is 

presented in DoD (2008), with a lower value corresponding to the yield stress fyd for 

small values of the maximum support rotations. 

For an unreinforced concrete member loaded in bending the maximum allowable 

shear stress, Vc, can be calculated with equation (2-94) or (2-95).  

( )2/1
2 dcc fV Ö=  (2-94) 
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( )[ ] ( )2/12/1
5.3          25009.1 dcdcc ffV ¢Ö+Ö= r

 

(2-95) 

Where r is the reinforcement ratio of tensile reinforcement at the support. 

According to DoD (2008), the ultimate shear force at the face of a support is 

reasonably estimated for a short duration blast load as a function of the maximum 

internal resistance only. If the ultimate resistance is not reached, the actual elastic 

resistance value should be used to obtain the shear forces at the supports. This 

corresponds to using the equivalent static load introduced in Section 2.4.2.6. The 

values for different support and load conditions are shown in Table 2.7. 

An interesting observation is that this corresponds to using the equation as in the 

Swedish approach, see equation (2-72), with transformation factors assuming a rigid 

body motion, i.e. km = kF = 1. Consequently, the contribution from the load is not 

taken into account as it is for the Swedish approach. This should be on the unsafe side 

initially but conservative during the plastic oscillation. 

Table 2.7.  The maximum support reaction according to DoD (2008). Ru and ru are 

the ultimate internal resistance force and force per unit length. 

Edge Conditions and Loading 

diagrams 

Support Reactions, Vs 
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The shear force at the supports of a slab is harder to determine but expressions can be 

found in DoD (2008). It is derived by using the yield line procedure and depends on 

which yield line figure that is chosen. The reader is referred to DoD (2008) for more 

information. 

 



CHALMERS, Civil and Environmental Engineering, Masterôs Thesis 2012:103 
53 

3 Reinforced concrete beam subjected to impulse 

load 

 

3.1 Introduction  

In order to give a better understanding of the behaviour of a reinforced concrete beam 

subjected to an explosion, an example is carried out. The beam is modelled in the 

finite element program ADINA which is considered to best represent the real 

behaviour. The result will be compared to the result that can be obtained by simplified 

hand calculations and with an equivalent SDOF approach described in Section 2.4.2. 

The problem will be simplified by only considering four material responses, namely; 

linear elastic state I, linear elastic state II, ideal plastic and elasto-plastic. The beam is 

modelled in ADINA with beam elements with the different simplified material 

behaviours. The example will later be extended by modelling the real non-linear 

behaviour in Appendix I. 

 

3.2 Definition of geometry and loading 

A 3 metre high and 400 mm deep reinforced concrete wall in a protective facility or a 

building without windows will be analysed. The wall is reinforced with steel 

reinforcement B500B f20 s200 which is placed 40mm from the edge. Since a 

dynamically loaded system will be strained in both directions it is important to 

reinforce both sides of the member equally. The concrete strength is C30/37. The wall 

is subjected to a uniform pressure that decreases with time. For this case the so called 

archive bomb, introduce in Section 2.1, has been used as a reference load; i.e. 125 kg 

of TNT detonated 5 metres away from the wall and assuming spherical spreading, 

Johansson and Laine (2007). This will give a peak pressure of 5000 kPa and an 

impulse intensity of 2800 Ns/m
2
, which corresponds to load duration of 1.12 ms when 

assuming a triangular load impulse as mentioned in Section 2.1. The archive bomb is 

referred to as load case 1, also denoted LC1. The wall will be subjected to other load 

cases with the same impulse intensity. All load cases and their corresponding values 

are presented in Figure 3.1. Further, when no specific load case is mentioned load 

case 1 is used. 
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Load case Ppeak [kPa] tD [ms] 
LC0 10,000 0.56 

LC1 5,000 1.12 

LC2 2,500 2.24 

LC3 1,250 4.48 

tDt
 

Ppeak 

Ppeak, 0 

Ppeak, 1 

Ppeak, 2 

Ppeak, 3 

tD, 0 tD, 1 tD, 2 tD, 3  

Figure 3.1. An illustration of the different load cases and their corresponding values 

of peak pressure Ppeak and load duration tD. All loads have the same 

impulse intensity i. 

The wall is not hindered to rotate at the rigid supports, which only support the wall in 

one direction. Thus, the wall can be simplified as a simply supported beam element 

with a width of 1 metre, see Figure 3.2. The data is summarised in Table 3.1. 

  

 

1.0m 

0.4m 

A-A 

3.0m 

A 

A 

q 

 

Figure 3.2. The dimensions of the beam used in the example. 

Table 3.1. Summarised data for the example beam. 

Data for the example 

Length, L 3.0 m Impulse intensity, i 2800 Ns/m
2 

Depth, h 0.4 m Peak pressure, Pc 5000 kPa 

Width, b 1.0 m Active time, tD
 1.12 ms 

Reinforcement f20s200 B500B   

Concrete C30/37   

Concrete cover, c 50 mm   
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The beam can be simplified into a single-degree of freedom system by choosing a 

system point and then applying an equivalent mass, stiffness and force to it. The 

centre point of the beam has been chosen as the system point in this example. The 

transformation of a beam into a SDOF-system is done by using transformation factors. 

The transformation factors depend on the shape of the beam deflection, which means 

that different transformation factors will be used for the different material behaviour. 

They are tabulated in Section 2.4.2.3. The equation of motion can then be solved 

analytically or numerically. The central difference method will be implemented in 

MATLAB for this example, and is presented further in Appendix A. 

 

3.3 Equivalent SDOF system 

3.3.1 Mass 

The hand calculation uses the work equilibrium method described in Section 2.4.2.4. 

In order to calculate the maximum deflection and the work equilibrium, the stiffness, 

equivalent mass and the maximum resistance force must be calculated. The mass can 

be calculated to  

kg28800.30.14.02400 =ÖÖÖ=ÖÖÖ= Lwhm r  (3-1) 

As shown in Section 2.4.2.3, the only parameter needed to be transformed into an 

equivalent parameter is the mass. It will depend on the deflection shape and hence we 

obtain different equivalent masses for the elastic and plastic cases, respectively. The 

əmF values are presented in Section 2.4.2.3. The equivalent mass for the elastic and the 

plastic materials respectively is 

kg 22702880788.0 =Ö== mm mFel k  (3-2) 

kg 19212880667.0 =Ö== mm mFpl k  (3-3) 

 

3.3.2 Stiffness 

The stiffness for a simply supported beam can be calculated as 

35

384

L

EI
k=  (3-4) 

Hence, the moment of inertia for state I and II is to be found. The influence of the 

reinforcement in the compression zone in state I and II can be neglected. The tension 

reinforcement is considered by transforming the steel area into a corresponding 

equivalent concrete area. 

ss

c

s
eqs AA

E

E
A a==,  (3-5) 

where 
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36.6
33
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===
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E
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a  (3-7) 

 

(3-8) 

 

The effective depth is 

mm 35050400 =-=-= chd  (3-9) 

Then the moment of inertia for state I can be calculated as 
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 (3-10) 

In state II, the moment of inertia must be calculated from the cracked cross-section. 

By assuming negligible normal forces, the height of the compressed zone x can be 

calculated by area equilibrium 

s

s

Abx

dA
x

b

x
a

a

+

+

= 2

2

 
(3-11) 

The height of the compressed zone is then obtained 

mm 74=x  (3-12) 

The moment of inertia in state II can then be calculated as 

( ) ( ) 482
3

2
3

mm 1097.874350157136.6
3

741000

3
Ö=-ÖÖ+

Ö
=-+= xdA

bx
I sII a

 

(3-13) 

The stiffness for the cracked and uncracked state can be calculated using 

equation (3-4). 

m

N
1000.5

35

1033.51033384 8

3

39

Ö=
Ö

ÖÖÖÖ
=

-

Ik  

m

N
 1042.8

35

1097.81033384 7

3

49

Ö=
Ö

ÖÖÖÖ
=

-

IIk  

(3-14) 

 

(3-15) 

 

3.3.3 Maximum internal resistance 

When the plastic case is considered, there is no stiffness and instead the internal 

resistance is explained by the maximum capacity. As a simplification, the plastic 

material behaviour is modelled as a straight line, which starts to yield at the maximum 

capacity. A comparison is made and the difference is only 2% between the ultimate 

moment capacity and moment capacity when the steel just yields, see equation (3-20).  
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The ultimate moment capacity must therefore be calculated. An explanation is given 

in Figure 2.5. The compressed zone, x, can be calculated from equation (3-16), if is 

assumed that the steel yields and that the section reaches its ultimate capacity when 

the concrete reaches the ultimate compressive strain in the outermost fibre. Factors aR 

and ɓR are stress block factors that are 0.81 and 0.416 respectively when the section 

has reached its ultimate capacity according to Eurocode 2, CEN (2004).   

 mm 42

1000
5.1

30
81.0

1571
15.1

500

=

ÖÖ

Ö

==
wf

Af
x

cdR

syd

a
 (3-16) 

The partial coefficients used for steel and concrete are equal to 1.15 and 1.5 

respectively. An explosion is categorised as an accidental load and therefore these 

partial coefficients should be set to 1.0 for steel and 1.2 for concrete. Nevertheless, the 

values used in this thesis will not affect the comparison. However, it should be 

noticed that in design the correct partial coefficients corresponding to an accidental 

load should be used. The moment capacity can then be established by moment 

equilibrium around the steel reinforcement.  

( )=Ö-ÖÖÖ= xdbxfM cdRRd ba  

( ) kNm 227042.0416.035.01042.0
5.1

30
81.0 =Ö-ÖÖÖÖ=  

(3-17) 

According to Biggs (1964) the maximum internal resistance is defined as 

kN 606
3

1022788 3

=
ÖÖ

==
L

M
R Rd

m  (3-18) 

The moment capacity when the reinforcement steel start to yield is calculated by 

assuming the strain in the tension reinforcement is equal to the yield strain. The 

moment at this point can be calculated as 

kNm 223 
32

2

=ö
÷

õ
æ
ç

å
-ÖÖ

-
Ö= II

II

IIsyC

yd

x
db

xd

xE
M

e
 (3-19) 

The ratio between the two moment capacities are stated as 

.980 =
Rd

yd

M

M
 (3-20) 

The state II stiffness has been used in the elasto-plastic model. This will give a 

slightly larger elastic deformation than in the real case. This is because a bi-linear 

relationship is assumed which will give a longer elastic branch, see Figure 3.3.   
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u 

Rm  - 

R 

Assumed behaviour 

Real behaviour 

uel,Real uel,Assumed 

 

Figure 3.3. The difference between the real behaviour and the assumed bi-linear 

elasto-plastic behaviour used in the SDOF model. 

 

3.4 Hand calculations 

3.4.1 Maximum required deformation 

The required deformation for having energy equilibrium assuming linear elastic 

behaviour can be calculated as 

wm

I
u c

el =  (3-21) 

The deformations in state I and state II can be obtained as 

mm 9.7
1000.52270

312800

8
, =

ÖÖ

ÖÖ
=Ielu  (3-22) 

mm 2.19
1042.82270

312800
7, =

ÖÖ

ÖÖ
=IIelu  (3-23) 

According to equation (2-17) the plastic deformation can be expressed as 

mR

I
u c

pl
2

2

=  (3-24) 

This will give the required plastic deformation 

( )
mm 3.30

105.60519212

132800
3

2

=
ÖÖÖ

ÖÖ
=plu  (3-25) 
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The total deformation for the elasto-plastic case can be calculated according to 

equation (2-18) as 

k

R

mR

I
u c

ep
22

2

+=  (3-26) 

The total elasto-plastic deformation will therefore be 

mm 9.33
1042.82

10605
103.30

7

3
3 =

ÖÖ

Ö
+Ö= -

epu  (3-27) 

Of which the elastic deformation is 

mm 1.7
1042.8

10605
7

3

, =
Ö

Ö
==

k

R
u elep  (3-28) 

Then the plastic part of the deformation can be calculated as 

mm 8.26,, =-= elepepplep uuu  (3-29) 

In the ideal plastic and the elasto-plastic cases, the maximum capacity is assumed and 

the energy is dissipated with plastic deformation. The failure criterion will therefore 

not be the moment capacity. It is rather the rotational capacity of the section that is 

important. 

 

3.4.2 Dynamic reactions 

The dynamic reactions can be calculated for the instant when maximum deformation 

takes place by using an equivalent static load, described in Section 2.4.2.6. For the 

elastic case it is 

wcel IQ =  (3-30) 

This gives a value for the uncracked case 

kN 3942
2270

1000.5
132800

8

, =
Ö

ÖÖÖ=IelQ  (3-31) 

And for the cracked case 

kN 1618
2270

1042.8
132800

7

, =
Ö

ÖÖÖ=IIelQ  (3-32) 

The plastic equivalent load is calculated from 

kN 606== mpl RQ  (3-33) 
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Rm is calculated according to equation (3-18). The moment effect on the beam at mid 

span can then be calculated as 

8

QL
M Ed =  (3-34) 

According to Johansson and Laine (2009) the support reaction can be found as 

2

Q
VEd =

 
(3-35) 

This gives the dynamic reaction presented in Table 3.2. Johansson and Laine (2009) 

also mention that higher support reactions can occur at an early stage when the beam 

is subjected to an impulse load. 

Table 3.2. Dynamic reactions at maximum deflection 

  u [mm] MEd [kNm] VEd [kN]  

Elastic state I  7.9 1478 1971 

Elastic state II  19.2 607 809 

Plastic  30.3 227 303 

 

An interesting observation is that less stiff elements will deform more but will not 

require as much capacity. However, there is an upper limit for how much an element 

can deform. For the elastic cases a simple capacity check can be carried out. For the 

plastic case the plastic rotation capacity must be limited.  

The Eurocode 2 approach to perform this check is described in section 2.2.3. Firstly, 

the shear slenderness should be checked. This is done by dividing the shear span with 

the effective depth of the member. The shear span for a simply supported beam is half 

the length. 

29.4
35.02

3

2

0 =
Ö

===
d

L

d

x
sl  (3-36) 

The diagram in Figure 3.4 is used for finding the plastic rotation capacity. It is only 

valid for ɚs=3. For other values it should be corrected with 

20.1
3
== sk

l
l  (3-37) 
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x / d 

qpl  [10 -3 rad] 

 

Figure 3.4. Diagram for evaluating the plastic rotation capacity according to 

Eurocode 2, CEN (2004). 

In this example, the ratio between the compressed zone and the effective depth of the 

beam is 

12.0
350

42
==

d

xu  (3-38) 

Class B reinforcement is used, then the plastic rotation capacity can be found as 

ɗpl = 12.5Ā10
-3

 
rad from Figure 3.4. It can be observed that the capacity is limited by 

the ultimate steel strain. However, it is a good design since the plastic rotation 

capacity is high. 

The maximum plastic rotation capacity can then be calculated as 

rad 1015105.1220.1 33

,

-- Ö=ÖÖ== pldpl k qq l  (3-39) 

The plastic rotation capacity can be related to the plastic displacement for a simply 

supported beam as 

mm 5.22
2

10153

2

3
,

, =
ÖÖ

==
-

dpl

dpl

L
u

q
 (3-40) 

which is smaller than the deformation in the elasto-plastic model. However, in 

equation (3-32) it is shown that the plastic deformation needed is 26.8 mm, i.e. larger 

than the capacity, which means that the beam will not be able to resist the blast load 

and will fail when the deformation reaches 22.5 mm. 
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3.5 FE-analysis ADINA ï considerations and restrictions 

3.5.1 Introduction  

For detailed analyses the finite element program ADINA will be used. It is a good 

choice when analysing a structureôs dynamic response. However, some important 

considerations and modelling simplifications must be introduced such as: usage of 

equivalent Young's modulus, FE elements, wave propagation, integration schemes, 

output and damping.  

 

3.5.2 Equivalent Youngôs Modulus 

The choice of modelling a simplified material in ADINA is by using a linear or bi-

linear material response. Hence, this will cause some modelling issues concerning the 

correct Youngôs Modulus and thereby the correct speed of the waves in the material. 

When the calculation in state II is performed, ADINA will not recognise that the 

section is cracked and will use the moment of inertia of the full uncracked concrete 

section. In order to model a cracked section and obtain the state II stiffness, the 

Youngôs modulus will be multiplied with the ratio between the moment of inertia in 

state II and state I from equation (3-10) and (3-13).  

GPa 18.533
1071.5

1097.8
3

4

=Ö
Ö

Ö
==

-

-

I

I

II
II E

I

I
E

 

(3-41) 

ADINA cannot model ideal plastic material behaviour. Instead, a bi-linear relation 

with a Youngôs modulus multiplied with 100 to approximate a fully plastic behaviour 

is used. 

GPa3300100 == Ipl EE  (3-42) 

It could be argued that the wave speed in the material should be maintained by 

changing the moment of inertia instead of Youngôs modulus. This will affect the 

fictional yield stress and the geometry of the beam and will consequently be a more 

complex way of modelling. The modelling can be performed in three ways, shown in 

Figure 3.5. The first scheme is used above in order to calculate an effective Youngôs 

modulus. This method does not maintain the wave speed in the beam, see 

equation (2-19), which will change with the square root of the factor used for the 

Youngôs modulus. Scheme 2 maintains the wave speed by only changing the moment 

of inertia I. As a result, the geometry and the fictional yield stress must be changed. If 

the height of the beam is increased to more than three times the span length it 

becomes a deep beam and ADINA cannot guarantee accurate solutions when using 

beam elements with the Euler-Bernoulli beam theory formulation. Therefore, a third 

scheme is introduced, which maintains the wave speed by increasing the density. 

Since the mass must be constant this unfortunately also affects the geometry and 

fictional yield stress. This is the most complicated scheme and is not preferable since 

it does not provide a solution to the deep beam problem. 
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Figure 3.5. The methods for changing stiffness when a cracked section or an ideal 

plastic section is considered.  

If the bending stiffness EI decreases and schemes 2 or 3 are used, the equivalent 

section will become wider and lower. Consequently, the deep beam formulation will 

never occur and these schemes are applicable at all times provided that the original 

section is not a deep beam. The ideal plastic case is modelled with larger bending 

stiffness EI. This will mean that the depth of the beam increases and problems in the 

modelling can occur. 

Scheme 1 is preferable to use since it only changes the Youngôs modulus. Therefore, 

the influence of the wave speed must be investigated. This is carried out by keeping 

EI constant, i.e. changing Youngôs modulus and the moment of inertia with the same 

factor, i.e. 

a

I
I ='          and       EIEI =)'(   (3-43) 

It is carried out in an elasto-plastic case but gives the same results in the elastic and 

ideal plastic cases. As can be seen in Figure 3.6, the deformation changes when the 

wave speed is decreased. The solution with 9 times less elasticity modulus diverges 

slightly after having reached the turn point. This corresponds to 3 times lower wave 

speed. Considerable change is not noticed until the velocity is wrong with a factor of 

five, i.e. E / 25. If the moment of inertia is increased 100 times, the beam becomes a 

deep beam and the deformation diverges a lot; i.e. such a combination cannot be used. 

The solution using an equivalent elasticity modulus, though, agrees well with the real 

behaviour. It can therefore be justified to use scheme 1 when modelling the state II 

behaviour.  
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Figure 3.6. The displacement in midpoint for different wave speeds in the beam. 

The deformation in the midpoint is very similar if the wave speed is the ñrealò wave 

speed or higher. Therefore, the model with ideal plastic behaviour is believed to be 

reasonably correct. It is not possible to investigate how the wave speed influences an 

ideal plastic 3 metres beam since the moment of inertia cannot be increased 

considerably before deep beam is obtained. Therefore, Studies of a 15 metres long 

beam have also been carried out. The a-value was 100. The deformation is higher for 

the model with higher wave speed while scheme 2 and 3 provide the same result.  

The wave speed in the beam is complicated and is researched by ADINA at the 

moment. As will be seen in Section 3.5.4, the time-step also influences the wave 

propagation and the existing problems with wave propagation should be known. 

However, the currently used modelling techniques are sufficiently accurate for this 

case and small changes in the wave speed can be neglected. 

 

3.5.3 FE-elements 

Beam elements will mainly be used for this thesis. A detailed analysis will be 

performed using 2D-solid plane stress elements will also be performed. 

All elements in the beam will be modelled as elastic, plastic or elasto-plastic. Ek and 

Mattsson (2009) modelled the beam with one plastic element in the midpoint. They 

obtained a large divergence in their result since the elastic elements oscillated around 

the plastic element. 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

D
e

fo
rm

a
ti
o

n
,u

s
[m

m
]

Time, t [ms]

100E

E=33 GPa

Eeq

E/9

E/25

E/100



CHALMERS, Civil and Environmental Engineering, Masterôs Thesis 2012:103 
65 

ADINA chooses 7 integration points over the height of the cross-section, regardless of 

the userôs choice, when performing 3D beam analyses. It has been shown in previous 

master theses (Ek and Mattsson, 2009; Augustsson and Härenstam, 2010) that 

ADINA will not have the assumed capacity of a 3D beam cross-section. The stress are 

correct at the integration points but the stress distribution in between is described with 

a polynomial which gives another capacity compared to what would be expected. This 

is illustrated in Figure 3.7. 

 

 

Expected stress distributon 

fyd 

fyd 

Stress distribution using  

7 integration points 

fyd 

fyd 

 

Figure 3.7. The stress distribution over the height using 7 integration points.  

However, when 2D beam elements are used it is possible to use 3 integration points 

over the height in ADINA, which will make the stress vary linearly through the cross 

section, see Figure 3.8. In this example only 2D action is used, which means that 2D-

beam elements with 3 integration points over the height are used. A fictional yield 

stress can therefore be introduced. The input fictional yield stress is dependent on the 

stress distribution and indirectly dependent of the integration points. The input 

fictional yield stress can therefore be calculated to 

Figure 3.8. Stress distribution when using 3 integration points over the height. A 

fictional yield stress, fyd can be introduced. 

 

3.5.4 Wave propagation 

3.5.4.1 Introduction  

Wave speed is of importance when investigating the initial behaviour of an impulse 

loaded structural element. Therefore, the modelling of wave propagation in ADINA 

needs to be investigated. This is done for both beam elements and solid 2D-elements. 

It should be mentioned that ADINA always uses the elastic wave regardless of the 

structures response, ADINA (2010). The investigation has been made with an impulse 

with constant amplitude for 1 ms, see Figure 3.9. 
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Figure 3.9.  Impulse load used for wave propagation studies. 

 

3.5.4.2 Beam elements 

The two cases shown in Figure 3.10 were investigated. The support reaction was 

investigated and the wave was assumed to arrive when the magnitude reached 0.5% of 

the maximum value. As presented in Section 2.4.1.6, the time until a pressure wave in 

one dimension would arrive at the support should be: 
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The time until a shear wave would arrive should be: 
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Large divergence between the theoretical wave speed and the analysis were found. 

The first case should correspond very well to a pressure wave and the second case to a 

transverse wave. Both cases have approximately the same arrival time. It is 0.21 and 

0.22 ms respectively. For case one a major shock front seems to arrive approximately 

at the theoretical arrival time but some disturbance has arrived before. This could be 

due to some numerical errors in the calculation.  
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Figure 3.10. Support reaction over time for the two experiments. The blue dotted line 

represent the theoretical arrival time for the waves.  

The wave speed in the beam model seems to be independent of Poissonôs ratio. The 

same result is obtained if no transverse deformation is allowed, i.e. n = 0. This 

suggests that the wave speed is calculated as the speed of a pressure wave when using 

beam elements regardless of the actual speed. This should not be true for a shear wave 

and therefore it may not be appropriate to model the wave propagation with beam 

elements. 

The wave speed depends on Youngôs modulus, E, of the material as seen in 

Section 2.4.1.6. The elastic modulus was therefore varied while the area and bending 

stiffness was kept constant, according to scheme 1 in Section 3.5.2, in order to see 

how the arrival time to the support changed. The elastic modulus was increased 25 

times, which gives the following input variables. 

cc
I

IEE 5'
25

'25' ===  (3-47) 

The result is visualised in Figure 3.11. According to equations (3-45) and (3-46) with 

parameters from equation (3-47) the arrival time should be approximately 0.08 ms for 

a pressure wave and 0.125 ms for a shear wave. The theoretical values are represented 

with a blue dotted line. Again, it can be seen that the support reaction has some 

disturbance before the major front arrives. The shear wave does not seem to be 

modelled appropriately using beam elements.  
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Figure 3.11. The reaction force over time for a beam with a higher Youngôs modulus, 

Eô = 25E. 

It was not possible to model a much lower elastic modulus since the program 

interprets the high moment of inertia as a deep beam section, which does not give 

adequate values using Euler-Bernoulli beam theory, compare reasoning in 

Section 3.5.2. This is a modelling limitation but will not influence the results in 

further analyses since Youngôs modulus is always higher and the moment of inertia is 

always lower.   

 

3.5.4.3 2D-solid elements 

The wave speed may not be modelled correctly with linear beam elements and in 

order to get a better understanding, the wave speed was also studied using 2D solid 

plain stress elements. It is also interesting to study whether the model distinguishes a 

shear wave from a pressure wave. The influence of Poisson's ratio is also studied to 

see how much it influences the wave speed for the two cases. 

To study the wave speed the simple cantilever beam of length 1.5m was used, see 

Figure 3.12a. A load in the form of a pressure load is applied to the tip of the beam. 

This load is applied in the axial direction to the beam, see Figure 3.12a. To measure 

the wave speed the reaction in the horizontal direction of the beam is studied at the 

support. For this case the influence of Poisson's ratio is very small, this can be seen in 

Figure 3.12b. The wave speed is higher when studied in the FE-analysis compared to 

the expected theoretical value. The theoretical wave speed for the pressure wave is  
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and the corresponding arrival time is 
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It can also be observed that the influence of Poissonôs ratio is very small leading to 

that this is presumably a pressure wave. 
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Figure 3.12. The wave speed when using 2D-solid elements. The dot in (a) indicates 

in which point the reaction is measured. 

When studying the shear wave the same cantilever beam model is used. The load is 

applied as a shear load at the tip of the beam and is distributed along the whole height 

of the beam, see Figure 3.13a. The reaction in the vertical direction is then studied at 

the support.  

This study shows that that the influence of Poisson's ratio is higher for the shear wave 

than a pressure wave, see Figure 3.13b. This is expected due to the influence of 

Poisson's ratio when calculating the shear modulus. The fact that the wave speed 

obtained in the second analysis is lower strengthens the assumption that it is a shear 

wave not a pressure wave. As for the first case the wave speed obtained in the FE-

analysis is higher compared with the theoretical value. The theoretical shear wave 

speed is 
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and the corresponding arrival time is 
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Figure 3.13. The modelling of a shear wave. Larger difference between the model 

with v = 0.2 or v = 0 implies that shear action is of more importance. 

 

3.5.4.4 Influence by choice of time step 

The wave propagation problem was investigated in contact with ADINA support, 

ADINA (2012). ADINA suggested that the initial disturbed region before the wave 

front occurs because the critical time has not been used and therefore numerical errors 

occur. According to ADINA, using a time-step close to the critical time step is vital in 

order to capture the wave properly. It is also suggested that the implicit method should 

be carried out with the Bathe Composite Method, which provides better results. The 

shear wave propagation is currently a researched subject ADINA (2012), and a 

straightforward recommendation for the critical time step for a shear wave does not 

exist. Reasonably, it would be the element length over the shear wave speed but this 

relationship could not be found. The critical time step is the time the wave propagates 

one element, ADINA (2010) and defined as 

 (3-52) 

Where Le is the element length and 

 (3-53) 

 
(3-54) 

for beam and 2D-solid elements, respectively, according to ADINA (2010). 

The chosen time step affects the wave propagation considerably. Figure 3.14 shows 

the support reaction when the critical time step is used. As seen, the agreement 

between the theoretical wave front (blue dotted line) and the wave front in ADINA is 

good. The previous found numerical errors before the wave front are decreased 

considerably. However, it does not seem like the shear wave can be well explained by 

beam elements and this is further supported by the fact that Poissonôs ratio does not 

affect the answer. 




































































































































































































































































































